Method to control cutting height in stripping combines with drum actuator

FIELD: mining.

SUBSTANCE: method is proposed to control cutting height of stripping combine drums, in which they register parameters of drums cutting-in into a side rock, and drum cutting height is set with control signals produced from the measured values. At the same time in process of mining works the measured values, which are registered, include consumption (ISM) of current by cutting motors that drive the drums, and also speed (VM) of stripping combine motion with the drum actuator. From these measured values in a computer they determine the appropriate specific energy (ESP) of cutting as the ratio of current consumption (ISM) to motion speed (VM). Besides, for various conditions of extraction, depending on hardness of coal to be produced and side rock deposited nearby, they set a characteristic value for specific energy (ESP) of cutting, which, when exceeded, results in cutting-in of drums into the side rock, and appropriate control signals are formed for correction of drum cutting height.

EFFECT: higher accuracy of combine drum cutting height adjustment.

3 cl

 

The invention relates to a method of adjusting the height of cut of the cutting drums are used as mining machines in underground mining of coal treatment combines with the drum by the Executive body, in which the cutting drum in side the breed register by means of the measured values, and the height of cut drum set derived from the measured values of the control signals.

A similar method is known from DE 3127702 A1. When this excited generated taken on the corresponding drum material cutting forces corps noise is measured mounted on the bracket of the drum sensor structure-borne noise. The amplitude of oscillations of the structure-borne noise are analyzed and compared with the characteristic for cutting coal, on the one hand, and for cutting the side of the rock, on the other hand, the frequency spectra. This comparing the generated control signals to set the height of the cutting drums. However, adverse way, this method does not work with the required accuracy, as the transfer data structure-borne noise through the brackets drums undergo additional influences, such as the rigidity of the layer, resulting vibration and the like.

Therefore, the basis of the invention lies task is to suggest a way specified first type, which works to improve the authorized precision.

The solution to this problem should, including favorable variants and improvements of the invention, the content of the claims, which set forth after this description.

In its basic idea of the invention provides that during mining operations is logged consumption (ISMthe current driving drums engines cutting, as well as the velocity (VMmovement of the Shearer drum by the Executive body as a measured value, and from this computing device is defined as the specific energy (ESP) cutting as the ratio of consumption (ISM) current speed (VMmovement, for various conditions blasting, depending on the hardness subject to coal mining and lying close to the side of the rocks thus establish the characteristic value for the specific energy (ESP) cutting, above which it is assumed the cutting drum at the side of the breed, and are formed corresponding control signals to adjust the height of cut drum.

This invention uses the elapsed specific energy (ESP) cutting treatment combines with the drum by the Executive body as a criterion in order to detect differences in cut reel minerals that distinguish the SJ different hardness.

While the specific energy (ESP) cutting is obtained from the following mathematical relationships:

ESP= PSM×η/VM×DW×TW,

thus

PSM= motor power cutting;

η = efficiency;

VM= speed;

DW= the diameter of the drum;

TW= depth of cut drum.

Since the value for DW, TWand η can be considered as constants, and the power PSMthe respective engine cutting can be taken as proportional to the current engine cutting, it can be considered that the specific energy (ESP) cutting corresponds to the ratio of the current (ISM) engine cutting speed (VMmovement of the Shearer drum by the Executive body.

This specific energy of cutting different, depending on, cut the drum in the corner or on the side of the rock. Depending on the specific conditions of the Deposit can be installed characteristic indicators for the specific energy of cutting for various coal horizons, as and to the side of the breed various manifestations and thereby leaving it to the forefront for individual Stopes. In this respect, these typical figures are parametrized by the computing device.

Thus, under the current mining operations in the computing device is allocated respectively to be spending the specific energy of cutting and compared with laid there characteristic values. Thus can be installed, cut whether the drum in the corner or on the side of the rock or cut, whether along the side of the breed. From this comparison can be formed by appropriate control signals to adjust the height of cut drum, and can be accordingly adjusted the height of the cutting drum.

In this respect, the invention involves the advantage that can be achieved automatic recognition of the boundary layer between coal and lateral breed or automatic prosecution of the boundary layer at the cut, namely, as for the preceding drum in his contact with the roof of the reservoir, and for going after him reel in his contact with the soil layer.

First of all, in order to avoid the inaccuracies of the measurements at the start of the Shearer drum by the Executive body, in accordance with one example embodiment of the invention provides that the calculation of the specific energy (ESP) cutting the computing device is only higher than the set as a lower limit speed (VMmovement, which, for example, may be passed by value 3 DM/min

Disclosed in the foregoing description, claims and abstract characteristics of these materials, alone or in any combination, can be significant for the NCD is estline of the invention in various forms of its implementation.

1. The method of adjusting the height of the cutting drums are used as mining machines in underground mining of coal treatment combines with the drum by the Executive body, in which the cutting drum in side the breed register by means of the measured values, and the height of cut drum set derived from the measured values of the control signals, characterized in that during mining operations as a measured value register consumption (ISMthe current driving drums engines cutting, as well as the velocity (VMmovement of the Shearer drum-Executive body, and from the computing device to determine the appropriate specific energy (ESP) cutting as the ratio of consumption (ISM) current speed (VMmovement, for different conditions of extraction depending on the hardness subject to coal mining and lying close to the side of the breed set according to the characteristic value for the specific energy (ESP) cutting, above which it is assumed the cutting drums in side rock, and generate appropriate control signals to adjust the height of cut drum.

2. The method according to claim 1, characterized in that in order to prevent inaccuracies change the value calculation of the specific energy (E SP) cutting the computing device produce only higher than the set as a lower limit speed (VMmovement.

3. The method according to claim 2, characterized in that set as the lower limit speed is 3 DM/min



 

Same patents:

FIELD: mining.

SUBSTANCE: in the proposed method for adjustment of automatic control of plough level in existing breaking faces for each plough stage they register depth of cutting and angle of longitudinal inclination produced as a difference angle between the inclination of the shield support frame bed roof slab and inclination of the face conveyor in direction of mining. In the calculation device they calculate variation of face height per plough stage so that in the calculation device with each position of the face conveyor corresponding to one plough stage they correlate face height as the plan height. At the same time in process of achievement of the corresponding position in the face with the shield support frame following the plough with a delay in time, they calculate actual height of the face on the basis of values taken by inclination sensors installed on the shield support frame and compare them with the plan height stored in the memory. The value of heights difference determined for the appropriate position in the face between the plan height and actual height during the following plough stages is taken into account in the sense of effect of self-training by the calculation device in process of setting of the angle of longitudinal inclination adjustment in the plough stage for achievement of the plan height of the face.

EFFECT: higher accuracy and reliability of plough control in a bed profile.

23 cl, 10 dwg

FIELD: mining.

SUBSTANCE: invention refers to mining industry and namely to control method of powered shield support. Method of controlled observance of a gap, preferably considering mine rock mechanics, between upper covering and coal face in mining faces is performed in the following way: during excavation of bituminous coal by means of underground method using slope sensors arranged at least on three of four main elements of each section of powered shield support there determined is slope of supporting covering and support slide in the cavity direction. On the basis of the measurement data, when changes in slope angle of supporting covering appear, influences on the gap between upper covering and coal face are determined in the calculation unit. Then, operating cycle of section of powered shield support, which includes unloading, supply and bracing, is controlled automatically to define an optimum gap between covering and coal face. Besides, slope sensors can be installed on support slide, goaf shield, load-carrying hinged cantilevers and in goaf area of supporting covering.

EFFECT: method allows monitoring and adjusting the gap between covering and coal face at advancing of extraction front; at that, hazard risk of formation roof destruction is minimised.

18 cl, 10 dwg

FIELD: construction.

SUBSTANCE: adaptive system for movement of a construction machine measures counteracting forces applied by soil surface to a milling drum, and in response to measured changes of these counteracting forces it controls a moving force fed to a moving drive of the machine, or moderates speed of lowering of a rotary milling drum.

EFFECT: early and quick detection of such changes in counteracting forces makes it possible for a control system to assist in prevention of forward or backward list phenomena accordingly in a construction machine.

21 cl, 9 dwg

FIELD: miningo.

SUBSTANCE: invention relates to mining, particularly, to mining machine displacing along conveyor. Proposed machine comprises sensor system arranged on machine frame 11 to perceive boundary zone mineral wealth/host rock. Note here that machine frame front side has sensor system mount. Note also that geological radar is used as the sensor system. Said mount can be adjusted over height. Besides, it is composed of several parts and comprises main box with to and/or bottom holes to house geological radar. Deflectors are arranged on both sides of said main box.

EFFECT: possibility to sound entire front of second working.

12 cl, 5 dwg

FIELD: oil and gas production.

SUBSTANCE: proposed device comprises hydraulic cylinders, electrically control hydraulic control valves, oil unit, and remote control board. It comprises also boom turn (lift) angle and telescope position transducers. Heading drive motor current transducer. Microcontroller with memory containing algorithm of defining face rock toughness, maximum feed rates depending upon motor current. To determine delivery of axial piston pump, an appropriate algorithm is used. Said pump is controlled via frequency inverter by PDM signal from microcontroller output. Mean voltage is selected from microcontroller to control induction motor squirrel-cage rotor rpm by adjusting pump shaft rpm.

EFFECT: otimised heading drive load current control.

2 dwg

FIELD: mining.

SUBSTANCE: in control method of drum actuating element equipped at least with one lever of drum actuating element each electric hydraulic section of the support is equipped with its own electric hydraulic control instrument. Control commands are entered for correction of lever position of drum actuating element from control instrument of support section. And they are supplied from there to control system of drum actuating element.

EFFECT: improving control efficiency of the cut by means of drum actuating element.

8 cl

FIELD: mining.

SUBSTANCE: system to control mining machine comprises a hydraulic drive of travel and a drilling rod with a power hydraulic control unit, a hydraulic drive of a loading element and hydraulic cylinders of a drilling rig with a power hydraulic control unit, an electrohydraulic unit of power hydraulic units control with a system of electric interlocks, sources of supply for hydraulic drive and control systems. At the same time power hydraulic units to control a hydraulic drive of travel, a drilling rod, a hydraulic drive of a loading element and hydraulic cylinders of a drilling rig are equipped with additional locking devices installed between sections of the hydraulic control units.

EFFECT: locking of the caterpillar drive and loading element drive during operation of drilling equipment to ensure safety of maintenance personnel.

1 dwg

FIELD: physics.

SUBSTANCE: system consists of an optical direction selector, a photodetector unit, as well as: a unit for controlling the direction selector, a signal matching unit, a microcontroller, a decoder, a matrix background polling module, bus-type conditioners, an interrupt signal generating unit, a switch, electric drives, a unit for monitoring and controlling electric drives, an optical transmitter control unit, an optical transmitter, a photodetector. All of these elements are interconnected.

EFFECT: determination of spatial coordinates of a mini-shield with high accuracy, which enables real-time communication with apparatus fitted on the mini-shield through a laser beam, endowing this system with noise-immunity and high speed of operation.

1 dwg

FIELD: mining.

SUBSTANCE: extraction device of coal in longwall face of underground mine working consists of the following: many sections of powered support, which are installed near each other throughout the length of longwall face between gates; plough machine; chute and conveyor located in it with possibility of movement, which are located throughout the length of longwall face between extraction machine and support sections; several deflecting devices and control device. Plough machine is provided with possibility of being moved along the line of the mining face and equipped with rock detection sensor which is provided with possibility of transmitting radio data of the detected rock to the control device of the support by means of the transmitter installed on the plough and the radio receivers installed along the longwall face. Group of adjacent support sections and sections of the chute corresponds to each deflecting device. Deflecting device is connected to control unit of one of the support sections of the appropriate group, and depending on the data of the detected rock, it provides the possibility of lifting the chute sections of the appropriate group, which is accompanied with lowering of the tools of the plough machine, and lowering of the chute sections, which is accompanied with lifting of plough machine tools. Control device includes the following: bottomhole control unit located at the end of longwall face for control of functions of support sections in relation to unloading, transportation and bracing of the support; control units of sections, each of which is put into spatial and functional compliance with the appropriate support section for performing and further transmitting the commands from bottomhole control unit; and the bus connecting mainly in series the bottomhole control unit to control units of support sections. At that, rock sensor when moving beside each support section is provided with possibility of generating the measurement signal characterising the detected rock only for several, mainly not more than two measurement points. Measurement signals received at neighbouring measurement points are subject to analysis with a view to predominance of rock or coal. Depending on analysis results, there generated is deviation signal supplied to the common deflecting device common for all measurement points, and namely to the deflection of the chute sections, which causes the lifting of plough machine tools if analysis results show the predominance of rock at the analysed measurement points, and to deflection of the chute sections, which causes the lowering of the plough machine tools if the analysis results show coal predominance at the analysed measurement points.

EFFECT: possible quick correction of the plough machine position during the coal extraction, which causes the lifting and lowering of the plough.

9 cl, 2 dwg

FIELD: mining.

SUBSTANCE: invention relates to the field of mining and may be used in designs of mining machines and other fields of machine building. Hydraulic system of mining machine control is additionally equipped with hydraulic cylinders of telescope tightening, in working manifolds of which there is a hydraulic valve installed with logical function "OR", as well as controlled check valve with control cavity, besides inlet manifolds of hydraulic valve with logical function "OR", which is installed in working manifolds of hydraulic cylinders for telescope tightening, are connected to outlet channels of hydraulic valves with logical function "OR", which are installed in outlet channels of hydraulic distributors for control of hydraulic cylinders of actuator lift and rotation, and control cavity of controlled check valve is connected to outlet channel of hydraulic valve with logical function "OR", which is installed in outlet channels of hydraulic distributor for control of hydraulic cylinder of telescope extension.

EFFECT: invention increases rigidity and reliability of support structures of mining machine actuator, improves durability of machine as a whole.

1 cl, 1 dwg

FIELD: mining industry.

SUBSTANCE: device has two asynchronous electric engines, connected via reducers to drive sprockets of continuous traction chain, provided with plane carriages with their possible displacement along the guide, and hydraulic cylinders for displacing guide on pit-face. To windings of stators of first and second electric engines connected respectively are outputs of first and second frequency converters, inputs of which are connected to power grid and control inputs of which are connected respectively to outputs of first and second frequency adjusters. To frequency adjusters also connected are inputs of load detectors, to outputs of which load balancing block is connected, outputs of which are connected to inputs of first frequency adjuster. To inputs of both frequency adjusters output of load adjuster is connected, inputs of which are connected to load-setting block and load sensor for second engine. To output of second frequency converter connected are input of control block, other input of which is connected to signal block of base plant, and stator winding of third asynchronous engine, which via mechanical link is connected to first and second hydraulic pumps, having constant working volumes. Output of first hydraulic pump is connected to force hydro-main and input of second preventing hydraulic valve and to first inputs of two-position hydraulic distributors with electromagnetic control, to electromagnets of which outputs of control block are connected. Second inputs of two-positional hydraulic distributors with electromagnetic control are connected to control chambers of hydro-controlled two-positional hydro-distributors, which are part of hydro-blocks. Outputs of hydro-controlled two-positional distributors are connected to opposite hollows of volumetric dosing device of each hydro-block, and their inputs are connected respectively to outputs of hydro-distributors for controlling hydro-cylinder for moving the guide on pit-face, inputs of each of which are connected to force and drain hydro-mains, and outputs are connected to piston and rod hollows of appropriate hydro-cylinder.

EFFECT: higher efficiency.

1 dwg

FIELD: mining industry.

SUBSTANCE: mining combine has extraction means, on which a body is mounted, having at least one first liquid outlet, for supplying liquid to material. Pipeline, through which liquid is fed to first liquid outlet, contains means for measuring flow and/or pressure of liquid in pipeline, for determining, in which of to layers outlet is positioned. Combine can have at least one second liquid outlet, placed in such a way, that first liquid outlet is in lower layer, and second liquid outlet is placed in upper layer. First liquid outlet can have one of multiple first liquid outlets spaced from each other, and second liquid outlet - one of multiple spaced from each other second liquid outlets. Efficiency of liquid flow through multiple spaced first outlets can surpass those of multiple spaced from each other second liquid outlets. Placement of second liquid outlet in separate body cover is possible. First and second liquid outlets can be directed downwardly relatively to direction of mining combine displacement. Method for controlling depth of position of mining combine extraction means includes placing two liquid outlets, interacting with material extraction means, in a material, while second liquid outlet is placed above first liquid outlet, liquid is fed to first and second liquid outlets and flow and/or pressure of liquid is measured. Layer, wherein liquid outlet lies, is detected, and first liquid outlet is placed in lower layer and second liquid outlet is placed in upper layer, to determine depth of position of extraction means relatively to two layers.

EFFECT: higher precision.

2 cl, 9 dwg

FIELD: mechanical engineering, particularly to perform remote control specially adapted for machines for slitting or completely freeing the mineral.

SUBSTANCE: system includes electric drive for cutting tools, hydraulic drive for feeder legs and crawler, two-stage control hydroblock to operate the hydraulic drive having inlet channel, hydrocylinder with piston cavity for support erector, control hydroblock adapted to operate support erector hydrocylinder, blocking hydrocylinder having spring-loaded shaft return means, two-positioned pilot spool, pumps, pressurizing means and discharge means. Pilot spool has outlet channel and hydrocontrol cavity to provide pilot spool fixation in two working positions. Outlet channel of pilot spool communicates with outlet channel of two-stage control hydroblock adapter to operate the hydraulic drive of feeder legs and crawler to provide alternate communication between outlet pilot spool channel and pressurizing and discharge means. Hydrocontrol cavity of pilot spool communicates with blocking hydrocylinder and piston cavity of support erector hydrocylinder.

EFFECT: increased safety for people present in zone of moving mining machine parts action.

1 dwg

Well drilling rig // 2265121

FIELD: mining industry, particularly for drilling exploratory and pressure-relief wells before mineral extraction from formations, including outburst-dangerous formations and ones characterized with high gas content.

SUBSTANCE: drilling rig comprises housing, support, drive to rotate drilling rod provided with cutting tool and hydraulic cylinder for cutting tool pulldown. Electrohydraulic valve is installed in hydraulic cylinder circuit. Electric drive of electrohydraulic valve is linked with load-sensing unit, which detects load applied to drilling rod rotation drive. The electric drive is connected to load-sensing unit through amplifier relay to provide bringing amplifier relay into operation when load applied to rotation drive exceeds nominal load by 20-30%. Cutting tool is made as symmetric screw conveying surfaces defining forward and reverse strokes connected one with another through generatrix. Side cutting edges of surfaces defining forward and reverse strokes are spaced apart.

EFFECT: increased operational reliability along with reduced power inputs for drilling, possibility to remove rod from well with negligible deviation thereof from predetermined direction of drilling.

2 cl, 3 dwg

FIELD: mining, particularly remote control specially adapted for machines for slitting or completely freeing the mineral.

SUBSTANCE: device comprises the first, the second and the third asynchronous motors. The first and the second electric drives are connected to drive sprocket of closed pull chain provided with plough carriages, which may move along guiding means. Device also has hydraulic cylinders to move guiding means to face, mechanical gear, the first and the second safety hydraulic valves, the first and the second hydraulic pumps, the first and the second frequency converters, the first and the second frequency regulators, load sensors, load balancing unit, load regulator, load assignment unit, control unit, initial setting signaling unit, hydraulic distribution means, which control hydraulic cylinders to move guiding means to face, hydraulic units, electrohydraulic unit, channel switching unit, flow meter, excavated seam thickness setting unit, breakage face length setting unit, multiplication unit, divider, optimizing peak-holding controller, control signal generation unit, asynchronous single-phase motor and screw gear made as a nut and screw. The first and the second hydraulic pumps include volume regulation means.

EFFECT: reduced specific energy consumption along with increased front plant output.

1 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining, in particular, to navigation system of combined cutter-loader intended for operations in open-pit bench. This mining equipment includes a combined cutter-loader, a conveyor assembly, and a steering assembly, which joins said combined cutter-loader and conveyor assembly. In addition, this equipment includes a course sensor and a steering device, which is sensitive to signals from said course sensor. The first drive is located in combined cutter-loader, in conveyor assembly, or in steering assembly. The first drive is placed on one side of combined cutter-loader centreline. In addition, the second drive is located either in combined cutter-loader, or in conveyor assembly, or in steering assembly. The second drive is placed on another side of combined cutter-loader centreline. The first and the second drives are used to adjust angle of joint between combined cutter- loader and conveyor assembly on either side of parallel line in order to keep pre-defined direction of combined cutter-loader advancing.

EFFECT: precise driving of combined cutter-loader in order to increase coal cutting from mining zone.

22 cl, 13 dwg

FIELD: mining.

SUBSTANCE: device for control over arrow of operating member of mining machine consists of hydro-cylinders of vertical lifting an horizontal turn and of arrow telescope, of half-throttle, included into line feeding working fluid into piston cavities of lifting hydro-cylinders, of double-sided hydro-locks included into feeding lines of lifting hydro-cylinders and telescope, of main distributors of hydro-cylinders control for lifting, turn and telescope, which are successively arranged to provide free overflow of working fluid into tank in neutral position, of main electro-hydro-distributors for control over main distributors and over additional distributor automatically switched on. There is also a main and additional pumps, a pressurising collector, safety valves, test pressure gages, a pressure regulator, a tank for hydro-system working fluid, and a control panel with buttons for six commands. Further the device contains a control station with a circuit of three memory elements and the element of logical function or operation, additional distributors with back valves on their outputs and correspondingly with throttles on control lines, pointed sensors of feedback, installed correspondingly on the hydro-cylinders and connected to memory elements.

EFFECT: power stabilisation of operating member of mining machine, increased efficiency of working member drive operation, increased energy saving at mine working and grade of extracted coal.

3 cl, 4 dwg

FIELD: mining.

SUBSTANCE: system consists of optical master of direction- laser, of diaphragm, of photo-receiving device, of interface module, of sensors of position of each degree of actuator mobility, of tilt sensor, of blocks of control over electro-hydro-valves and of computer device. The photo-receiving device consists of semi-transparent mirror assembled at angle of 45° to lengthwise axis of the case of the device, of two screens - the tail and knife ones with zero-marks, and of two video-modules. The tail screen is arranged above reflecting surface of the semi-transparent mirror so, that it is parallel to lengthwise axis of the device, while the knife screen is located at some distance beyond non-reflecting surface and perpendicular to lengthwise axis. Each video-module is installed behind the corresponding screen at the focal distance of the objective.

EFFECT: upgraded reliability and efficiency of control over actuator.

6 dwg

FIELD: mining.

SUBSTANCE: group of inventions is related to system and methods for control of getting machine along bottomhole in underground mine tunnel, and also to mining face for method realisation. Method includes measurement of gas concentration and depending on measurement results, generation of warning signal. At the same time volume of production achieved by getting machine is additionally established. In case of insufficient correlation between volume of production and gas concentration, a warning signal is generated.

EFFECT: invention provides for possibility to minimise danger of methane gas explosion in mining face, to establish fact of gas sensor failure and/or manipulation with it.

26 cl, 3 dwg

FIELD: mining.

SUBSTANCE: device for orientation of tunnelling system during construction of curved tunnels includes the units located in line of sight and at the specified distance from each other, the end ones of which are rigidly fixed, one - in starting tube, and the other one - on tunnelling shield, intermediate units are installed inside the erected part of the tunnel, each unit is equipped with a photo sensor, light emitting element and roll sensor, also, the device is provided with sensor of amount of advance and data transfer channels between the device assemblies and computing unit with a display; at that, each unit is equipped with a plate with sector symmetric light-tight slots, plate is located on motor shaft the axis of which coincides with the direction of tunnelling operation, on both sides of the plate in horizontal and vertical planes passing through motor axis there installed are light-emitting elements directed to the plate side; at that, each unit contains differently directed photo sensors oriented parallel to motor axis.

EFFECT: improving the orientation accuracy of tunnelling system and operating characteristics of the device, and increasing standardisation of the device components.

3 dwg

Up!