|
|
High pressure chamber and method of high pressure chamber cooling This invention relates to treatment of items with hot pressing, preferably by hot isostatic pressing. The pressing device comprises a furnace chamber located inside a high pressure chamber of a device and surrounded with a heat insulated jacket. Under the furnace chamber there is the lower insulating section. For circulation of the working medium under pressure in the furnace chamber there is a fan with adjustable number of rotations. In the device there is at least one supply channel with an outlet. The specified channel provides for connection between the zone under the lower insulating section and the fan inlet for mixing of the flow from the specified zone with a flow in the channel above the lower insulating section and below the furnace chamber. At the same time it is possible to adjust the specified mixed flow by correction of number of fan rotations. |
|
Processing device contains a high pressure vessel having the furnace chamber and a heat exchanger located under it. The furnace chamber contains a heat insulated cover and furnace. Between the housing part and the heat insulated section of the heat insulated cover a guiding pass is formed which is intended for guiding of the working medium under pressure. In the cover the first and the second inlet are provisioned for passing of working medium under pressure in the guiding pass. Meanwhile the second inlet is located under the heat exchanger in a vertical direction and towards the working medium flow under pressure in the guiding pass during the cooling phase, and the first inlet is located above the heat exchanger. |
|
Invention refers to a dental furnace for prosthetic dentures. The furnace comprises a firing chamber, wherein a prosthetic denture can be notably placed, particularly in a muffle between the furnace bottom and top; what is also provided is a temperature sensor connected to a control unit of the dental furnace, arranged outside the firing chamber and having a detection sensor extending outside the firing chamber. The temperature sensor is additionally configured in the form of a proximity sensor; the furnace has particularly at least one auxiliary sensor for detection and identification of an approaching object and/or user of the dental furnace. |
|
Device for high-temperature test of metals and alloys Device is intended for high-temperature test of metals and alloys in vacuum or in gas medium. The device includes a detachable pressure-tight chamber consisting of top and bottom parts attached to each other through a flange connection, a melting pot with a metal or alloy test specimen arranged in it, pipelines for pumping the air out of the chamber and supply of gas to it, a temperature metre and an induction heater. In the top part of the detachable pressure-tight chamber an arrangement is made for a cooled box-like element with a detachable cooled plate fixed on it, calibrated as to weight and made from alloyed heat-resistant steel. The melting pot is located inside the detachable pressure-tight chamber. The cooled box-like element is connected via pipelines to a cooling substance supply and circulation unit in the above element. |
|
Proposed method comprises control over copper content in matte and stabilisation of matte composition by maintaining reset melting conditions by correcting control effects. Note here that correction of said control effects is carried out continuously by compensating disturbances in discrete delayed control over copper content in matte corresponding to equivalent delay defined by mathematical expression. |
|
Said air suspension and reducing agent are placed inside isolated vessel provided with perforated branch pipe located at vessel bottom to make air suspension and communicated with external pipeline for feeding compressed air at excess pressure of 0.1-0.6 kgf/cm2. Raw stock 0.02-1.0 mm-dia particles filled some 20-40% of the volume of said vessel. Said reducing agent represents carbon-bearing compounds contained in compressed air fed to make suspension of particles inside said vessel. Said suspension and reducing agent are subjected to effects of variable rotary magnetic field with intensity in treatment zone of 1.5×103÷1×106 A/m and frequency of 40-70 Hz. Reduction brings about copper particles. Components for generation of aforesaid field are composed of interconnected plates made from permeable material and shaped to rectangle inside which three windings-coils are arranged. Every said coil is electrically connected with appropriate phase of external three-phase power supply. One of said components has through groove that allows fitting into said vessel of cover arranged atop said vessel to inhibit communication with surroundings. |
|
Method and device to process oxidised ore materials containing iron, nickel and cobalt Method is carried out in two stages - melting and further reduction of a slag melt, sending the slag melt from the melting stage to the reduction stage is carried out in a direction opposite to motion of gaseous and dusty products, gaseous products of the melting and reduction stage are burnt above the melt of the reduction stage. The amount of oxygen in a wind supplied into the melt at the melting stage makes 0.9-1.2 from the theoretically required one to oxidise fuel carbohydrates to CO2 and H2O, amount of oxygen in a wind supplied for afterburning of gases above the slag melt of the melting stage makes 0.9-1.2 from the one theoretically required to oxidise components of effluent gases to CO2 and H2O, amount of the oxygen-containing wind supplied into the melt at the melting stage makes 500-1500 m3/m3 of the slag melt, the amount of the oxygen-containing wind supplied to the melt at the reduction stage makes 300-1000 m3/m3 of the slag melt. A furnace by Vanyukov is disclosed, in which a gas flue for joint removal of gases of melting and reducing chambers is installed in the end of the melting chamber dome at the distance of the reducing chamber above tuyeres of the upper row of the melting chamber along the vertical line in gauges of the lower row tuyere relative to the plane of the lower row tuyeres, the melting chamber bottom is arranged by 5-30 gauges below, the horizontal plane of upper row tuyere installation is by 30-80 tuyeres higher, the horizontal plane of lower row tuyeres installation in the reducing chamber is arranged below the upper edge of the vertical partition between the melting and reducing chambers by 40-85 gauges of the reducing chamber tuyeres. |
|
Procedure consists in charging wastes of zinc into crucible of furnace, in their re-melting at temperature equal or higher, than temperature of melting at presence of anhydride of boric acid produced in furnace at thermal decomposition of boric acid. The distinguished feature of the procedure is charging boric acid on a bottom of the furnace crucible before charging wastes of zinc. Weight of boric acid is calculated by formula: y=25.1(100-x), where y is weight of boric acid per 1000 kg of zinc wastes, kg, x is content of metal zinc in wastes, %. When temperature of melt of zinc wastes reaches 700-750°C, it is conditioned in the furnace for 45 min. Also, height of melt of zinc wastes in the crucible of the furnace is maintained as 800 mm. The furnace consists of a case, of lining with refractory bricks, of the crucible for melting wastes of zinc laid with refractory bricks, of gas dead-end burners positioned in chambers and communicated with the crucible of the furnace through channels in mason-work of furnace crucible, of a cover of the furnace crucible, of two notches, one of which is located at height of 80 mm from the bottom of the furnace crucible designed for casting refined melt of zinc into moulds, while the second one is located at the level of the bottom of the furnace crucible and is designed for casting melt of zinc containing inter-metallic compounds or true solutions of impurity metals in melt of zinc into moulds. |
|
Procedure for thermal treatment of solid domestic and industrial waste Wastes are treated in Vanyukov's furnace with slag melting, supplying charge and oxygen containing gas through tuyeres into slag melting. Charge is melted and slag is generated at temperature 1250-1400°C. The procedure is implemented in the furnace wherein height of tuyeres can be changed. With growth of the lowest working heat-producing capacity of charge height of axis of tuyeres arrangement from a bottom of the furnace is increased. Value of ratio of blast of oxygen containing gas (nm3/hour per 1 m2 of cross section of a furnace) and the lowest working heat-producing capacity of charge (kJ/kg) is maintained within the ranges of 0.07-0.12 facilitating degree of carbon burning-out in charge to its residual content in slag at the level of 0.1-0.15%. |
|
Process furnace or similar equipment Furnace has an outer cover, a reaction chamber inside the cover, a heating system and a system for circulating the reagent gas. The outer cover of the furnace and the reaction chamber bound a first volume between the inner side of the cover of the furnace and the outer side of the reaction chamber and a second volume inside the reaction chamber. The first volume is divided into a first part which forms the heating zone which accommodates the heating system and a second part in which the reagent gas is present. The heating zone is hermetically insulated from the second part. The furnace also has a system for circulating inert gas which is made and placed with possibility of feeding inert gas into the heating zone at a rate which provides positive differential pressure relative the pressure of the reagent gas inside the second part of the first volume in which the reagent gas is present in order to prevent passage of the reagent gas into the heating zone. |
|
Device for metal-thermal reduction of pulp of galvanic production Device consists of cylinder case with cover equipped with internal refractory coating. Also, inside the case there is installed a graphite crucible in form of truncated cone facing the bottom with smaller base. An orifice in the base is closed with a pusher. Further, the device consists of a striking appliance. The device is equipped with a located in the cover branch for exhaust of volatile products of metal thermal reaction from a working reservoir into a neutralising installation and with a branch for blasting with compressed air. |
|
Caisson of pyrometallurgical aggregate of bubble type Caisson consists of plate out of heat conducting material with imbedded into it coil, and of connecting pipes for input and output of coolant. Ratio of total area of the coil of the caisson calculated by its external diametre (F1, m2) to area of the caisson (F2, m2) from flame side is F1: F2-0.90-2.2. The caisson can be made with an orifice for insertion of air tuyere into it. |
|
Furnace consists of caisson shaft divided with cross partition into melting and reducing chambers equipped with low and upper tuyeres, of sole, of siphon for accumulation and tapping metal and slag via corresponding channels with orifice in lower part of end wall, of device for loading charge and solid materials into melting and reducing chambers and of pipe for fume extraction. The siphon is equipped with at least one bushing for insertion and transfer of an electrode in it, with a block for electrode manipulation, with a power source, and with a block of control-measuring facilities and automation. Also an upper part of the electrode is connected to the power source and to the block of control and measuring facilities and automation; the output of the latter is coupled with an input of the manipulation block ensuring vertical reciprocal motion of the electrode via its drive and its deviation from vertical axis. |
|
Furnace for continuous refining of magnesium Furnace consists of lined jacket with electrodes, and of bell installed inside with charge chamber and central vertical channel, with vertical webbing, overflow channels and bottom between two of ribs and two branches with removable funnels. An orifice of diameter bigger, than diameter of a charging branch and of cross section less, than cross section of the overflow channels in vertical ribs near the charging branch is made in the bottom under the charging branch. The removable charging funnel is ended with a cup-like guide of flow at depth of 0.1-0.5 of height of the bell from its top. Also diameter of the guide is 30-80 mm bigger, than diameter of the end of the charging funnel. Working electrolyte of electrolytic cells is used as heating salt. |
|
Furnace consists of case with installed therein melting section equipped with facility for charge supply and burner and electro-thermal section divided from melting section with partition not reaching hearth; also melting section is equipped with electrodes, electric holders, devices for metal and slag tapping and with gas duct. A lower edge of the partition is positioned above the level of the slag tapping device thereby forming a gas-overflow port of alternate cross section with the level of melt. The metal tapping device is equipped with a well communicated with an overflow zone of the partition via a channel. Section of the port is chosen according to specified ratio of furnace width to inter-axis distance between electrodes. The charge supply facility has a chute superposed on a stepped hearth with incline to a partition side. |
|
Procedure consists in charging zinc containing raw material together with additive of metal aluminium at amount of 0.02-0.05 % of weight of zinc containing raw material into stand of salts melt of composition wt %: NaCl - 56-59, NaF - 22-23, KCl - 11, Na2B4O7 - 4-6, B2O3 - 3-5 at temperature 600-700°C. The furnace consists of a shell made out of refractory steel. A ceramic branch is used for draining refined melt of zinc into pans. The ceramic branch is also used for emptying the furnace of zinc and salts melt during maintenance repairs and emergencies. The bottom of the furnace is lined with refractory non-metallic materials. The shell of a crucible on internal surface is also lined with refractory non-metallic materials at height from the bottom of the furnace up to 500-600 mm; a layer of refractory glue is applied at the joint point of refractory non-metallic lining with internal surface of the shell. |
|
In arch of siphon there are implemented openings or windows for loading of carbon-bearing materials, partition with bottom window or windows for flow of melted slag into siphon is implemented in the form of common end wall for liquid-phase smelting shaft and siphon with electrode(s) and allows window or windows for fume extraction from under arch of siphon, located on level not higher than horizontal axis of top row of tuyeres of liquid-phase smelting shaft, siphon is outfitted by solid transverse partition, installed in its bottom part parallel to common end wall for liquid-phase smelting shaft and siphon at a distance enough for flow of required volume of slag melt from liquid-phase smelting shaft on surface of heated layer of carbon-bearing material, herewith solid transverse partition fully separates siphon from liquid-phase smelting shaft, and its top edge is located higher than horizontal axis of bottom row of tuyeres of liquid-phase smelting shaft. |
|
Device for gas-thermal oxidation of objects made from titanium and titanium-containing alloys Invention relates to equipment for passivation of metal surfaces, more specifically to devices for gas-thermal oxidation of objects made from titanium and titanium-containing alloys. The device has an oxidation chamber, fitted with a cooling system and a heating system, a unit for feeding gaseous mixture into the oxidation chamber, a unit for outlet of gaseous mixture from the chamber, a chamber for cooling oxidised objects, which has a unit for flowing cooling inert gas medium in and out. The cooling chamber is joined to the oxidation chamber through a rotary valve, made with two hemispherical gates, which can open and close the opening in the rotary valve for joining or separating both chambers. |
|
Invention relates to non-ferrous metallurgy field. According to method it is implemented voltage feeding to electroconductive refractory rods, used for slag heating and setting adjusting of current value. It is displaced rod and implemented continuous measurement and comparison of current value through rod with setting. At equality of measured value of current to setting value it is fixed top surface of slaggy or metallic phase of melt in tank of iron-and-steel furnace. In the capacity of electroconductive refractory rod it is used graphitic rod or electrode, used for electroarc heating of melt in tank of iron-and-steel furnace. After achievement of equality of current setting to corresponding measured current values it is checked equality to zero of the first current derivative. |
|
Plant for object survey under high temperatures Invention is related to testing of objects, comprising explosive and toxic substances, for various thermal effects. Plant comprises working chamber with loading window arranged with the possibility of its overlapping, the following components installed inside chamber - device for fixation of object and at least one fuel header with vortex nozzles, device for fuel supply, tube connected with its one end to fuel supply device, and with the other end - to header, ignition device, additionally, at least one tray installed under header, and at least one pair of additional devices for fuel supply and ignition, every of which is installed at a preset distance from working chamber and is connected accordingly by the first and second additional tubes to tray. On the second additional pipe, upstream ignition device, pipe cooling device is installed. |
|
Dehydration method of carnallite raw materials and device for its implementation Group of invention relates to non-ferrous metallurgy, particularly to method and device for preparation of carnallite raw materials to the process of electrolytic magnesium recieving. According to the method carnallite raw materials are loaded and dehydrated in the furnace by fuel gas, dehydrated carnallite is separated in dust cyclone from withdrawn gas and fed into the melting cyclone, where it is heated by fuel gas, received in burner by means of chlorine burning in natural gas, it is melted and heated up to the temperature 700-800°C. After overheating mixture of fuel gas and molten waterless carnallite is fed simultaneously in the melt collector, where gas is separated from the melt by means of collision with partition and fed into the furnace to dehydration stage, and waterless carnallite is discharged. Unit includes furnace with nozzles for loading of raw materials and gas mixture withdrawal with waterless carnallite, with nozzle for feeding of fuel gas, dust cyclone, connected to the furnace by gas pipe, melting cyclone, connected by pipeline to dust cyclone and melt pipe with melt collecto, outfitted by burner for burning of chlorine, collector of the melt with discharge nozzle for melt. It is also outfitted by gas flue, connecting melt collector with furnace and outfitted by device for gas feeding additionally melt collector is implemented in the form of tank with partition and outfitted by additional nozzle, connected to gas pipe. |
|
Assemble for reprocessing of powdered lead- and zinc-containing raw materials Invention relates to ferrous metallurgy, mainly to devices for reprocessing of powdered lead- and zinc-containing raw materials, in which there can be copper and precious metals. Aggregate for reprocessing of powdered lead- and zinc-containing raw materials contains rectangular upright smelting chamber with burner facility, gas cooler stack, partition with water-cooled copper elements, separating smelting chamber from gas cooler stack, electric furnace, separated from the smelting chamber by partition with water-cooled copper elements, coffer chord, facilities for discharge of smelting products, bottom, herewith correlation of difference of level of bottom edges to distance from the smelting chamber crown to bottom edge of partition, separating electric furnace from the smelting chamber, is 0.15-0.29, and relation of distance from bottom edge of this partition up to bottom to difference of level of bottom edges is 1.25-2.10. On walls of gas cooler stack of aggregate there are installed not more than two tuyers on the level of bottom edge of partition, separating gas cooler stack from smelting chamber, with inclination into the side of bottom on-the-mitre to horizontal plane, specified by formula α=arctg(k-ΔH/B), where α - angle of tuyers slope; k - coefficient of angle of tuyers slope, equal to 1.11-1.25; ΔH - difference of level of bottom edges of partitions; B - inside width of gas cooler stack. At mounting of two tuyers they are located by one on each of opposite side walls of gas cooler stack with reflector displacement relative to its cross-axial section. Additionally each of it is located at a distance of cross-axial section of gas cooler stack, relation of which to inside length of gas cooler stack is 0.25-0.30. |
|
Liquid-phase furnace for smelting materials containing ferrous and nonferrous metals Invention relates to metallurgy and, particularly, to the plants for continuous processing of oxidised nickel-containing ores, slag and dust. The liquid-phase furnace includes rectangular caisson-type well with lined walls being situated underneath. The well expands in the upper part. It is provided with top and bottom tuyeres. The well is separated into smelting and recovery chambers by a transverse partition. The chambers are interconnected through the window for smelt cross-flowing in the lower part of the transverse partition. The furnace also includes staggered or tilted hearth, slug discharge trap and electrodes being merged into the smelt. The electrodes are installed in slug release trap with their heat-generating ends being placed on the border of slug phase and metal phase separation in the trap. Besides, the trap volume is more than 10 times less than the recovery chamber volume. |
|
Furnace of magnesium continuous refinement Invention concerns devices for refinement of magnesium. Furnace of magnesium continuous refinement with salt heating includes lined cylindrical casing installed inside on supports alloying basket with central vertical channel, crown, introduced through side wall lower than alloying basket electrodes and bottom with bevels. At that distance from bottom till electrodes is 200-300 mm, and distance from electrodes till alloying basket is 1.0-2.0 of electrodes height. Electrodes are located symmetrical relative to vertical axes of furnace and relative to each other. In crown above electrodes there are implemented manholes with covers. Supports of alloying basket bear on electro- insulating supports or gaskets, and top edge of electrodes is implemented as bevel. Diameter of bottom horizontal part is 0.5-0.95 of distance between diametrical electrodes. |
|
Method of treatment hard gold-arsenical ores and concentrates and furnace for its implementation Invention concerns treatment of hard gold-arsenic ores. Particularly it concerns antimonous sulphide ores and concentrates. Method includes without oxidising melting in smelting chamber with receiving of matte and slag melts and treatment of melting products by metallic phase. At that without oxidising melting is implemented continuously in circulating melted slag with out of melting products into settling chamber to interphase boundary slag - matte. Before melting circulating melted slag is separated from operating gases. For circulating it is used maximum separated from matte slag. Treatment of matte by metallic phase is implemented in continuous operation. Furnace for processing of hard gold -arsenic ores and concentrates includes smelting chamber. Furthermore, it is outfitted by recycling contour, containing of gas-lift unit with tuyeres and descending and ascending channels of melted slag, gas separating and settling chambers. Gas separating chamber is communicated with smelting chamber through bleed blowhole by means of channel for separation of working gas of gas-lift unit and gas separating chamber from circulating melted slag. Smelting chamber immersed into settling chamber to interphase boundary slag - matte. Settling chamber contains gas flue for withdrawal of sublimates and low blowing melting products. |
|
Furnace for continuous melting of sulphide materials in molten pool Invention refers to metallurgy, particularly to devices for continuous processing of sulphide ores and concentrates containing copper and/or nickel. The furnace consists of a caisson stack with tuyeres, of a facility for charge loading, of two transverse partitions not reaching a bottom thus forming overflow ports for melt; the said partitions divide the stack into a melting chamber, a reduction chamber and a chamber of settling; the furnace also consists of a device for tapping of molten products and of individual facilities for gas exhaust from the melting and reduction chambers. The partition dividing the melting and reduction chambers pressure tight separates gas space between the chambers. The upper edge of the overflow port into the settling chamber is located above the upper edge of the overflow port between the melting and reduction chambers, while the devices for tapping molten products from the furnace are arranged from the side of the settling chamber. |
|
Vanyukov furnace for melting materials containing non-ferrous and ferrous metals Invention relates to metallurgy branch and particularly to oxidized nickel ore processing to matte or ferronickel. Vanyukov furnace contains coffered well, which is rectangular at bottom and expanding in top part and separated by cross wall into melting and reduction chambers, staggered or tilted hearth, siphon with openings for sludge and metal containing phase discharge. Tuyeres are displaced along periphery of well walls. Chambers contact between each other through the window for melt flowing in low part of cross wall. Furnace is provided with tuyere adjusting melt flow volume through window for melt flow and its heating. It is located under the level of the said tuyeres by 5-8 diameters of their aperture. Rectangular walls of melting and reduction chambers of furnace are lined and conjugated along the whole height of cross wall through temperature compensated vertical clearances closed by coffered part of well walls from one side and by cross wall end from the other side. Cross wall is made high-refractory. Invention ensures increase of operation duration or reliable operation due to exclusion of crust formation in melt flow window from one chamber to another and avoidance of lining damage in rectangular part of furnace well and reduction of coolants flow rate. |
|
Inventions refer to metallurgy and can be used fro production of ferronickel with various contents of nickel out of Ural and other oxidised nickel ores. The assembly is equipped with injectors for blowing dust into slag melt, the said dust caught in gas cleaning system while carried out with exhaust gases out of a chamber. Fuel oxygen burners are installed in side walls of the chamber above the level of the slag melt at 0.5-1.2 m at an angle of 15-60° to the surface of the melt and at an angle of 35-65° to the lengthwise axis of the assembly, while nozzles of the injectors for blowing into the slag melt carbon containing materials and dust caught in gas cleaning and carried off with exhaust gases out the chamber are installed at 0.25-0.60 m above the level of reduced metal. Heat exchangers of cooling circuit of liquid metal heat carrier are connected via nitrogen lines with injectors installed in the walls of the chamber, the said injectors facilitate injection of carbon containing materials and caught in gas cleaning and carried off by the exhaust gases out of chamber dust in a stream of heated nitrogen. |
|
Plant for research of objectives at high temperatures The plant has a working chamber with a loading port made for its shut-off, device for attachment of the objective and at least one fuel trap with swirl injectors located inside the chamber, fuel tank connected to the device for fuel supply, pipe for fuel feed to the trap, whose one end is connected to the device for fuel supply, and the other-to the trap, ignition device. In addition, the installation has a cooled coil with an adjustable gate valve at its outlet and a fuel temperature-sensitive element installed at its inlet, at least one pipe for discharge of fuel from the fuel trap, whose one end is connected to the upper surface of the fuel trap on the side opposite the point of connection to it of the pipe of fuel supply, and the other end is connected to the inlet of the cooled coil, whose outlet is connected to the fuel tank through the adjustable gate valve. The swirl injectors are provided with branch pipes made for fuel supply to the injectors from the bottom surface of the fuel trap. |
|
Furnace for refining magnesium Furnace for refining magnesium includes jacket with lined bath where electrodes are arranged; supports arranged on hearth of furnace for supporting bell with central branch pipe. Said bell and bath are mounted coaxially one to other and they have cylindrical shapes with relation of their diameters (0.8 - 0.9) : 1. Branch pipe of bell is embedded under roof having opening. Novelty is that distance between electrodes and furnace hearth consists 14 - 15% of height of lined bath of furnace; distance between lower cut of bell and furnace hearth consists of 10 -15% of height of line bath. Branch pipe of bell is protected by means of cast iron coating. |
|
Method and device for compaction of porous substrate by the gaseous phase chemical infiltration Invention is pertaining to the field of compaction of porous substrates by- the gaseous phase chemical infiltration. Exercise loading of substrates exposed to compaction- into the furnace loading area; heat up substrates in the furnace up to their temperature, at which the required substance of the mold will be formed from the gaseous source or sources contained in the gas-reactant. Then- on the one hand of the furnace inject gas-reagent and heat it up after injection- during its transit in the furnace through the gas heating area located- in the direction of the gas-reagent travel through the furnace in front of the loading area. Gas-reactant is exposed to preheating before its injection in the furnace for reaching prior its injection in the furnace of the temperature intermediate -between the environment temperature and the substrates preheating temperature. Installation includes the furnace, the area of substrates loading in the furnace, the means of heating of substrates in the loading area, at least, one hole for the gas-reagent injection in the furnace and, at least, one heating area of the gas-reagent disposed in the furnace between the hole of the gas-reagent injection and the loading area. Installation also contains, at least, one gas preheating device disposed out of the furnace and connected, at least, with one hole used for injection of the gas-reagentin the furnace and ensuring- preliminary heating up of the gas-reagent before its injection in the furnace. The presented method and the device allow to reduce significantly the temperature gradient in the whole area of loading without usage of the large the volume of the gas-reagent heating area. |
|
Apparatus includes melting and pouring chamber where non-consumable electrode and crucible of graphite are arranged. Inner surface of crucible is covered with refractory tungsten non-interacting with melt. Apparatus for tilting crucible includes carcass having two mutually parallel vertical grooves. In mutually opposite grooves rollers are arranged with possibility of limited motion. Said rollers are secured to ends of levers through hinges joined with crucible. Carcass includes movable support for crucible secured to wall of carcass. Said support may be moved in horizontal plane. In order to set designed gap, crucible and apparatus for tilting it are moved upwards till contact of billet with end of electrode; then movable support of crucible is introduced and crucible is moved downwards till support. After melting billet said support is withdrawn. Crucible falls down and tilts along path providing motion of point of crucible inner surface at side of draining mostly spaced from axis of crucible in tilting plane along vertical line. |
|
Gypsum drying and/or burning plant Method involves supplying hot gases to inlet of the first channel; delivering gypsum to inlet of the second channel, which is concentric to the first one; moving gypsum in the second channel by supply screw; providing indirect heat-exchange between gypsum and hot gases; burning gypsum to obtain semihydrate gypsum. Gypsum movement and indirect heat-exchange stages include drying and partial burning gypsum to create semihydrate gypsum. Gypsum burning at the last stage is terminated in bringing gypsum into contact with hot gases. The last burning operation is of pulsed type. Gypsum movement and heat-exchanging stages continue for 30 sec-5 min. Gypsum burning by hot gases is carried out for 1-10 sec. Device for described method realization and ready product are also disclosed. |
|
Furnace for processing oxidized ore materials containing nickel, cobalt, iron Furnace includes caisson shaft divided by means of vertical cross partition by melting and reducing chambers provided with tuyeres; united stepped along chambers hearth; siphon with over-flow duct and with openings for discharging slag and metal-containing melt. Vertical cross partition dividing chambers is mounted fluid-tightly in hearth of melting chamber and it has height equal to 35 - 55 diameters of tuyeres of melting chamber over plane of their arranging. Hearth of reducing chamber is inclined by angle 25 - 60° to horizon from vertical cross partition towards over-flow duct. |
|
Proposed furnace has casing and lined shaft with hearth and electrodes which is closed by roof, branch pipes for loading molten salts and magnesium and discharging magnesium. Casing is conical over entire height with lesser base directed towards furnace hearth at ratio of lower base to upper part of furnace equal to 1: (1.75-1.85). Furnace is provided with detachable bearing plate whose area is equal to area of hearth; central shaft is tightly secured in furnace roof and is mounted on bearing plate; it is made from detachable side-beams; lower side-beam has openings opposite electrodes. Besides that, side-beams of central shaft are interconnected by tenon-and-mortise joints; branch pipes for loading and unloading magnesium are mounted on furnace roof at different sides, central shaft is tightly closed at the top by means of cover provided with branch pipe for loading salt. Side-beams of central shaft are made from cast-iron or steel casting; upper edge of opening of furnace central shaft is located above upper edge of electrode end face; ratio of height of opening of lower side-beam of central part of furnace to its total height is equal to 1: (2.5-3.0). |
|
Method and device for processing raw lead material Proposed method includes treatment of entire volume of slag melt with oxygen-containing blast in zone of delivery of blast to melt at rate of 500-1500 nm3/h per m3 of slag; oxygen-containing blast is simultaneously delivered to slag melt at level above metallic lead surface of 5 to 20 calibers of lance and above slag melt of 30-80 calibers of lance assuming smooth surface of slag; metallic lead temperature is maintained within 700-1100°C and that of slag within 900-1300°C. For realization of this method, use is made of furnace whose crucible hearth located vertically in calibers of lance of lower row relative to horizontal plane of lances below by 10-30 calibers under furnace shaft and slag siphon channel hang-up by 2-10 calibers, pouring port lip is located above by 10-20 calibers and by 30-100 calibers of upper row lances; lead siphon hang-up is located below hearth level by 2-5 calibers. |
|
Device for refining magnesium and preparation of magnesium alloys Device refining magnesium and preparation of magnesium alloys includes furnace made in form of shaft with casing lined with heat-insulating and refractory layers, heaters, crucible with flange, bearing ring and cover; refractory layer consists of several detachable cylindrical blocks in height of furnace shaft interconnected by means of tenon-slot joints and provided with projection on outer side and slot on inner side. Detachable block is solid in form and is assembled from half-rings which are interconnected by means of slot-to-slot joints and are secured by mortar. Block is made from high-strength chemically and thermally stable refractory material, for example concrete claydite or fluorine phlogopipe. Heat-insulating layer is made from basalt slabs. Ratio of refractory and heat-insulating layers is equal to 1:1.5. Zigzag heaters are secured on refractory block over entire height of furnace shaft. |
|
Method involves melting with the use of oxygen-containing blast gas; converting; depleting slag in gasifier; reducing gases from melting process and converting with hot gases from gasifier. Oxygen-containing blast gas used is exhaust gas of energetic gas turbine unit operating on natural gas or gas generating gas from coal gasification. Gas used for gas turbine unit is gas generating gas from bath coal gasification produced on slag depletion. Flow line has melting bubbling furnace, converter, gasifier for slag depletion, gas turbine unit with system of gas discharge channel connected through branches with tuyeres of melting furnace, converter and gasifier. Each of said branches is equipped with pressure regulator and flow regulator. |
|
Proposed method includes loading zinc into cages in sodium tetraborate melt containing 3-7 mass-% of boric acid anhydride at temperature of 750-800°C. Furnace used for purification of zinc is provided with pot for melt for avoidance of pouring of sodium tetraborate melt. Said pot is provided with branch pipe for pouring purified zinc melt into ingot molds. Proposed method may be performed in continuous mode. Production of zinc is increased not below 99.55%. |
|
The melting cavity with heaters located in it, the heaters pass outside through the brickwork, where they are cooled for production of the conditions of melt crystallization inside the brickwork thus providing the furnace leak-proofness, the minimum thickness of the brickwork is determined by an empirical relation: dmin=a+b(Tf-Tmelt)/Tmeit+C[Theat/Tmelt-Theat)]2, where: dmin- the minimum wall thickness; Tf - the temperature of metal inside the furnace; Tmelt- the metal melting point; Theat- the temperature of the outside end faces of heaters; a, b, c - empirical coefficients equal to 10, 25 and 2,2 cm respectively. |
Another patent 2551309.
© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English. |