RussianPatents.com
|
Method of producing protective coatings on articles with carbon-containing base. RU patent 2458893. |
|
FIELD: chemistry. SUBSTANCE: invention relates to production of carbon articles and materials and is meant for protecting articles operating in oxidative medium conditions at high temperatures, for example in metallurgy industry, aircraft building and other industries, from oxidation. The method involves formation on the surface of the article of a slurry coating based on a composition consisting of a mixture of fine powder of carbon and a refractory metal or compound thereof and a binder, heating the article in silicon vapour in a vacuum in the volume of a reactor with subsequent ageing and cooling. The refractory metal or compound thereof used is Mo and/or W and/or "И", and/or Zr and/or Hf, which are active towards silicon, and/or compounds thereof such as carbides and lower silicides of these metals, e.g., Mo2C, MoC, W2C, WC, TiC, ZrC, HfC, Mo5Si3, W5Si3, Ti5Si3, Zr5Si3, Hf5Si3 or similar. The article is heated in silicon vapour at pressure 1-36 mm Hg to temperature 1500-1750°C and held in said temperature interval and pressure for 1-3 hours, after which the article is cooled in silicon vapour. Heating from 1000°C to 1500-1750°C is preferably carried out at a rate of not more than 150°/h with isothermic ageing at temperatures where chemical reactions for forming silicides are intense. EFFECT: high heat resistance and wider range of obtained coatings. 2 cl, 3 tbl
|
Ceramic mixture for engobing / 2455269 Invention relates to the technology of silicates and compositions of ceramic mixtures which can be used in engobing ceramic articles. The ceramic mixture for engobing contains the following in wt %: kaolin 43.5-51.3; clay 39.0-43.0; marble flour 0.6-1.2; potsherd 4.0-6.0; dolomite 0.1-0.2; nepheline 4.0-6.0; carboxymethyl cellulose 0.1-0.2; liquid potassium glass 0.3-0.5. |
Method of producing non-metal casting / 2454385 Proposed method relates to production of non-metal components for construction structures, heat engineering assemblies and chemical hardware with aggressive working media. Non-metal materials are fused and melt is poured into mould. Produced cast is cooled by sprinkling with water to 670-950°C for solid particles of aluminium to be charged on cast surface. Aluminium on cast surface is fused by cast heat to create 1-9 mm-thick aluminium melt layer on cast surface. Then, said melt is blown by air at melt temperature of 10-600°C unless complete oxidation of aluminium and production of component. Air temperature is decreased at aluminium layer smaller thickness and increased at larger thickness. |
Refractory ceramic article / 2433105 Invention relates to refractory materials and engineering ceramics and can be used in production of refractory ceramic articles, including industrial containers used during synthesis of high-purity materials based on niobiuim and tantalum pentaoxides, as well as for refractory lining of chemical apparatus, furnaces and structural elements. The refractory ceramic article has a base made from several flat blocks of quartz ceramic with moderate porosity, between which there are seams filled with solder of niobium or tantalum pentaoxide, and an outer coating of niobiuim or tantalum pentaoxide applied on the base. The edges of the blocks of the base are rounded and the corners of the blocks are smoothed. The solder in the seams has a double-tee cross-section with concave sides of the support. The width of the seam is not greater than twice the thickness of the block. The spherical radius of the edges of the blocks is not greater than half the thickness of the block. |
High temperature coating / 2427559 Invention can be implemented as protection from oxidation of ceramic composite materials for parts of hot routs of perspective gas-turbine installations (GTI) and gas-turbine engines (GTE) of transport systems and power engineering operating under effect of oxidising mediums and fuel combustion products at temperature up to 1600°C. High temperature coating has the following chemical composition, wt %: silicon 10-14, boron 3-7, hafnium oxide 50-60, hafnium boride 12-19, boron carbide 8-14. |
Layer or coating and composition for applying said layer or coating / 2394798 Present invention relates to a composition for applying a layer of coating, particularly an anti-adhesion layer for casting moulds which are in contact with molten metals or glass. The composition contains aluminium titanate or silicon nitride with average particle size greater than 500 nm, an oxide inorganic component with average particle size between 100 nm and 10 mcm and a binding agent which contains particles with average size less than 50 nm. When preparing the composition, aluminium titanate or silicon nitride is dispersed in water and the obtained dispersion is mixed with aqueous dispersions of an inorganic oxide component, binding agent and additional components. The oxide component can be aluminium oxide or titanium oxide and the additional components can be boron nitride or graphite. The invention also relates to use of the composition to apply a layer or a coating on fire bricks, graphite or steel articles, to layers or coatings applied from this composition, to articles which are at least coated with the said layer or coating. |
Fire-resistant mixture and multicomponent material for protective coatings of heating elements based on lanthanum chromite made from said mixture / 2389709 Invention relates to heat-resistant nonmetallic materials and can be used to make effective protective coatings of heating elements based on lanthanum chromite working in an air atmosphere. The invention involves use of a heat-resistant mixture composed of lanthanum chromite, frits from oxide phases and aluminoborosilicate glass with the following ratio of ingredients, in wt %: lanthanum chromite 32-44, frit 43-48, aluminoborosilicate glass 13-20. The frit from oxide phases contains the following components, in wt %: yttrium oxide Y2O3 63-65, aluminium-magnesium spinel MgAl2O4 13-21, lanthanum aluminate LaAl11O18 6-13, mullite Al6Si2O13 6-13, aluminoborosilicate glass SiO2 53-55, CaO 18-20, Al2O3 13-15, B2O3 9-11, MgO 2-4. The multicomponent material for protective coatings obtained from the mixture contains crystalline phases and a glass phase in the following ratio, in wt %: LaCrO3 29-42, Y2O3 30-31, MgAl2O4 6-8, LaAl11O18 3-5, Al6Si2O13 3-5, aluminoborosilicate glass phase 16-22. |
Protective coat / 2383514 Protective coat contains liquid potassium glass and powdery fillers, at the following ratio of components in weight parts: liquid potassium glass - 100-150, silicon carbide - 100-200, graphite - 1-12, sodium fluorsilicate - 0-12. |
Method for manufacturing of composite material / 2379268 In manufacturing of a composite material, a carbon-base filling cloth is used as a material blank impregnated with a compound of liquid Bakelite 100 weight fractions, isopropyl alcohol 54-100 weight fractions, tetraethoxysilane 44-160 weight fractions and water 7-32 weight fractions. Thereafter drying, consolidation and thermal processing at temperature 1800-2000°C with formation of silicon carbide follow. |
Method of preparing super-hard coated abrasive / 2378231 Described is a method of preparing a super-hard coated abrasive, specifically a coated abrasive based on diamond or cubic born nitride (cBN). When realising this method, an inner layer of an element which is capable of (individually or combined with other elements) forming carbides, nitrides or borides is deposited onto the surface(s) of abrasive material at the first stage through a hot coating method. The hot coating method is selected from a group a group comprising a method of depositing from gaseous phase via thermal decomposition of metal halides, a method of chemical deposition from vapour phase and a thermal diffusion coating method. Vanadium, molybdenum, tantalum, indium, zirconium, niobium, tungsten, aluminium, boron and silicon are usually used for depositing the inner layer. Through reactive sputtering using a reactive gas, the inner layer is coated with at least one outer layer made from material selected from a group comprising metal carbides, metal nitrides, metal borides, metal oxides and carbonitrides, boronitrides and borocarbonitrides of metals, for example carbide or nitride of titanium, silicon or aluminium. |
Composition for manufacturing carbon silicon-carbide material / 2375333 Siliconising composition includes the following components, parts by weight: liquid bakelite BZh3 - 100, isopropyl alcohol - 67-100, tetraethoxysilane - 53-160, water - 11-32. |
Mixture for ceramic material based on zirconium and aluminium oxides and zirconium nitride / 2455261 Invention relates to ceramic material science, particularly to production of ceramic material based on heat-resistant non-oxygen and oxide compounds, characterised by high strength and crack-resistance, and can be used to make a cutting tool, in oil and gas industry (valve devices and sealing rings of pumps), in making nozzle extensions for air-sand blowers and chemical solution sprayers. The ceramic material is obtained from a mixture which contains components in the following ratio, wt %: Al2O3 10-40, ZrN 20-65, ZrO2 - the balance, at sintering temperature 1700-1800°C and nitrogen pressure during sintering of 0.10-0.12 MPa without a complex operation for isostatic moulding using high pressure. |
Method to develop structural ceramic material / 2450998 Charge is prepared, containing the following components, mol. %: SiC - 53-62, BN - 3-7, Al - 35-40, at the same time the rated quantity of aluminium is introduced in it in full volume, doing mechanical activation. Primary stocks are shaped from the charge, dried, exposed to vacuum sintering and grinding. After the secondary shaping the stocks are dried, sintered in vacuum, nitrified at the temperature of 1050°C, and thermal treatment is carried out at 1400°C. Vacuum sintering is carried out at the temperature of 1150±2°C. The produced structural ceramic material is characterised by higher density and strength: withstands compression stress of at least 450 MPa, bending stress - of at least 130 MPa at high working temperatures of the material (at least 1400°C). Shrinkage at the stage of cermet conversion into ceramics - not more than 0.5%. |
Method of producing polycrystalline cubic boron nitride with fine-grain structure / 2450855 Invention relates to production of polycrystalline cubic nitride with fine-grain structure. Cubic boron nitride-based polycrystalline material is produced by applying high pressure and temperature to charge containing composite powder with grain size of 4-100 nm including hexagonal boron nitride and aluminium nitride at the ratio of (4-6):1. Composite powder is produced by CBC-technology from boron-aluminium-nitrogen-containing compounds. Process is conducted at 60-120 kbar and 1700-2400°C in the region of thermodynamic stability of cubic boron for 15-60 s. |
Method of producing cubic boron nitride-based polycrystalline material / 2449831 Invention relates to producing cubic boron nitride-based polycrystalline material. Proposed method comprises subjecting charge containing composite powder BNr+AIN with grain size of 4-100 nm obtained in SAA-process from boron-aluminium-nitrogen-containing compounds, cubic boron nitride and catalyst, to high pressure and temperature, at the following ratio of components, in wt %: BNr+AIN - 65-75, cubic BNr - 15-25, catalyst - 3-10. Ratio of hexagonal boron nitride to aluminium nitride in composite powder makes (4-6):1.Grain size of cubic boron nitride powder may make 1-40 mcm. Additionally, powder of hexagonal boron nitride with grain size of 1-40 mcm in amount of 1-15% wt % or silicon in amount of 0.1-1 wt % may be added to said charge. Synthesis is conducted at 60-120 kbar and 1700-2400°C for 15-60 s. |
Method of producing superconducting three-component boride / 2443627 Invention relates to chemical industry, particularly, to production of new superconducting boron-containing compounds. Proposed boride including lithium, vanadium and boron and having transition to superconducting state at 27 K is produced by sold-phase high-temperature synthesis of initial components made up of the mix of vanadium and boron powders with molar ratio of 1:2 and 0.3-0.5 mol of metallic lithium at 1000°C in vacuum of 10-4 Pa for 5 minutes. |
Method of producing aluminium nitride-based heat-conducting ceramic / 2433108 Invention relates to production of aluminium nitride-based heat-conducting ceramic which can be used in electronics and electrical engineering, particularly as substrate material for powerful microwave and power semiconductor devices, as well as other devices where there is need for good dielectric properties, strength and heat conductivity of the material. Powder of aluminium nitride with particle size less than 1 mcm, containing not less than 10% cubic phase of aluminium nitride with particle size less than 100 nm, and a technical additive selected from Y2O3, CaO, MgO in amount of not more than 6 wt % is used to prepare a mixture, with addition of not more than 65 vol. % organic component containing a solvent (mixture of methylethyl ketone with ethanol in ratio of 1:2), a dispersant (phosphate ether), binder (polyvinyl butyral) and a plasticiser (mixture of polyethylene glycol with dibutyl phthalate), followed by stirring with simultaneous deaeration for not less than 30 minutes rarefaction of air of not less than 0.15 atm. A belt is formed from the obtained slip, dried and cooled to room temperature. A plate is formed from the belt. The organic component is removed at temperature 150-500°C. The obtained half-finished product is sintered at pressure 0.1-1.0 MPa in the atmosphere of a nitrogen-containing gas at temperature 1650-1820°C for 1-3 hours and then cooled under given conditions. |
Superhard material / 2413699 Invention relates to production of superhard material which contains CVD diamond and which can be used in making a wheel dressing tool, a cutting, drilling tool etc. The surface of the CVD diamond is partially or completely covered by a shell under high pressure and temperature, where the said shell has a frame made from polycrystalline diamond (PCD) or polycrystalline cubic boron nitride (PCBN) with a bond between diamond-diamond grains or cBN-cBN grains, between which an activating additive is placed. The surface area of the shell surrounding the CVD diamond is not less than 40% of the surface of the CVD diamond; said shell contains 70-95 wt % PCD or PCBN and 5-30 wt % activating additive. If the shell is made from polycrystalline material based on PCD, the activating additive contains silicon and/or at least one transition metal, and if made from polycrystalline material based on PCBN, the activating additive contains aluminium and/or nitrides, borides and/or salicides of group IlIa, IVa, IVb, Vb, VIb, VIIb and VIII metals. The CVD diamond component of the superhard material can be polycrystalline as well as monocrystalline and can have different shapes and dimensions. |
Material of moistened cathode of aluminium electrolyser / 2412284 Material of moistened cathode of aluminium electrolyser consists of refractory compound of titanium boride and non-organic binding on base of high dispersed aluminium oxide moistened with liquid aluminium. Also, contents of titanium boride in finished material are not less 30 wt %. As binding on base of high dispersed aluminium oxide there is used "Al-corit-98" at amount of 10 wt %. It additionally contains electro-conducting powders of graphite or copper, or iron. |
Wettable cathode material for aluminium electrolysis cell / 2412283 Wettable cathode material for an aluminium electrolysis cell consists of titanium diboride wettable by liquid aluminium and binder - saturated solution of a hexa-hydrate of aluminium trichloride with ratio of titanium diboride to binder between 1:50 and 1:15. |
Method of producing polycrystalline cubic boron nitride / 2412111 Invention relates to production of synthetic superhard materials, particularly, polycrystalline cubic boron at high pressure and temperature to be sued in chemical, electronic and other industries. Proposed method comprises preparing mix of wurtzite-like and cubic modifications in relation of 1:4 to 2:1, respectively, processing it in planet mill for mechanical activation and crushing to grain size not exceeding 1 mcm, forming and annealing the mix at 1400-1800°C and 7.0-9.0 GPa, keeping at annealing temperature for time defined by conditions of transition on boron nitride wurtzite modification into cubic one without recrystallisation, equal to 5-30 s. Accurate time of keeping at preset temperature and pressure is defined proceeding from necessity of preservation of 5 to 15% of wurtzite boron nitride amount in initial mix. |
Composite / 2243955 Claimed material is sintered under pressure and contains (mass %): hexagonal boron nitride 45-80 and second material 55-20. The second material represents solid aluminum oxide solution in silicium nitride containing 35 % or less of oxygen. |
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English. |