RussianPatents.com

High temperature coating. RU patent 2427559.

FIELD: machine building.

SUBSTANCE: invention can be implemented as protection from oxidation of ceramic composite materials for parts of hot routs of perspective gas-turbine installations (GTI) and gas-turbine engines (GTE) of transport systems and power engineering operating under effect of oxidising mediums and fuel combustion products at temperature up to 1600°C. High temperature coating has the following chemical composition, wt %: silicon 10-14, boron 3-7, hafnium oxide 50-60, hafnium boride 12-19, boron carbide 8-14.

EFFECT: increased thermal resistance of coating during long term; increased resource and reliability of operation of items of aircraft equipment under effect of oxidising mediums and fuel combustion products at temperature up to 1600 degrees.

2 tbl

 


 

IPC classes for russian patent High temperature coating. RU patent 2427559. (RU 2427559):

C04B41/87 - Ceramics
Another patents in same IPC classes:
Layer or coating and composition for applying said layer or coating / 2394798
Present invention relates to a composition for applying a layer of coating, particularly an anti-adhesion layer for casting moulds which are in contact with molten metals or glass. The composition contains aluminium titanate or silicon nitride with average particle size greater than 500 nm, an oxide inorganic component with average particle size between 100 nm and 10 mcm and a binding agent which contains particles with average size less than 50 nm. When preparing the composition, aluminium titanate or silicon nitride is dispersed in water and the obtained dispersion is mixed with aqueous dispersions of an inorganic oxide component, binding agent and additional components. The oxide component can be aluminium oxide or titanium oxide and the additional components can be boron nitride or graphite. The invention also relates to use of the composition to apply a layer or a coating on fire bricks, graphite or steel articles, to layers or coatings applied from this composition, to articles which are at least coated with the said layer or coating.
Fire-resistant mixture and multicomponent material for protective coatings of heating elements based on lanthanum chromite made from said mixture Fire-resistant mixture and multicomponent material for protective coatings of heating elements based on lanthanum chromite made from said mixture / 2389709
Invention relates to heat-resistant nonmetallic materials and can be used to make effective protective coatings of heating elements based on lanthanum chromite working in an air atmosphere. The invention involves use of a heat-resistant mixture composed of lanthanum chromite, frits from oxide phases and aluminoborosilicate glass with the following ratio of ingredients, in wt %: lanthanum chromite 32-44, frit 43-48, aluminoborosilicate glass 13-20. The frit from oxide phases contains the following components, in wt %: yttrium oxide Y2O3 63-65, aluminium-magnesium spinel MgAl2O4 13-21, lanthanum aluminate LaAl11O18 6-13, mullite Al6Si2O13 6-13, aluminoborosilicate glass SiO2 53-55, CaO 18-20, Al2O3 13-15, B2O3 9-11, MgO 2-4. The multicomponent material for protective coatings obtained from the mixture contains crystalline phases and a glass phase in the following ratio, in wt %: LaCrO3 29-42, Y2O3 30-31, MgAl2O4 6-8, LaAl11O18 3-5, Al6Si2O13 3-5, aluminoborosilicate glass phase 16-22.
Protective coat / 2383514
Protective coat contains liquid potassium glass and powdery fillers, at the following ratio of components in weight parts: liquid potassium glass - 100-150, silicon carbide - 100-200, graphite - 1-12, sodium fluorsilicate - 0-12.
Method for manufacturing of composite material Method for manufacturing of composite material / 2379268
In manufacturing of a composite material, a carbon-base filling cloth is used as a material blank impregnated with a compound of liquid Bakelite 100 weight fractions, isopropyl alcohol 54-100 weight fractions, tetraethoxysilane 44-160 weight fractions and water 7-32 weight fractions. Thereafter drying, consolidation and thermal processing at temperature 1800-2000°C with formation of silicon carbide follow.
Method of preparing super-hard coated abrasive / 2378231
Described is a method of preparing a super-hard coated abrasive, specifically a coated abrasive based on diamond or cubic born nitride (cBN). When realising this method, an inner layer of an element which is capable of (individually or combined with other elements) forming carbides, nitrides or borides is deposited onto the surface(s) of abrasive material at the first stage through a hot coating method. The hot coating method is selected from a group a group comprising a method of depositing from gaseous phase via thermal decomposition of metal halides, a method of chemical deposition from vapour phase and a thermal diffusion coating method. Vanadium, molybdenum, tantalum, indium, zirconium, niobium, tungsten, aluminium, boron and silicon are usually used for depositing the inner layer. Through reactive sputtering using a reactive gas, the inner layer is coated with at least one outer layer made from material selected from a group comprising metal carbides, metal nitrides, metal borides, metal oxides and carbonitrides, boronitrides and borocarbonitrides of metals, for example carbide or nitride of titanium, silicon or aluminium.
Composition for manufacturing carbon silicon-carbide material / 2375333
Siliconising composition includes the following components, parts by weight: liquid bakelite BZh3 - 100, isopropyl alcohol - 67-100, tetraethoxysilane - 53-160, water - 11-32.
Composition for thermal barrier, machine unit from superalloy with coating containing such composition, ceramic coating and method of coating obtaining Composition for thermal barrier, machine unit from superalloy with coating containing such composition, ceramic coating and method of coating obtaining / 2365565
Invention relates to composition of ceramic thermal barrier, used in machine units from superalloy. Composition contains base from zirconium oxide, at least one trivalent oxide from group containing erbium oxide, europium oxide, praseodymium oxide, terbium oxide, holmium oxide and their mixtures, allowing to stabilise zirconium oxide and optimally reduce zirconium oxide heat conductivity, and at least one pentavalent oxide from group: niobium oxide, tantalum oxide or their mixture, allowing to reduce number of oxygen vacancies in such way that it was in fact equal to number of oxygen vacancies in partially stabilised zirconium oxide. Said trivalent oxide is present in molar concentration created by the first part, allowing partial stabilisation of zirconium oxide, and by the second part, which introduces point defects into grid, said pentavalent oxide being present in molar concentration equal to molar concentration of said second part of trivalent oxide.
Method of ceramic item engobing / 2356874
Invention concerns ceramic item production, mainly of ornamental purpose. Method of ceramic item engobing involves application of engobing coating onto twisted textile fiber with further fiber positioning fiber onto an item surface, drying and glazing. Twisted textile fiber can be divided in lengthwise sections coated with angobe layer of different colours. Engobing utilises twisted organic textile fiber burned out later during glazing.
Method for processing of fire-resistant products / 2356873
Invention is related to production of fire-resistant products and may be used in aviation and rocket engineering. Technical result is achieved by layerwise saturation of refractory material surface with carbon by means of fullerene solution impregnation in organic dissolvent. Product is placed above heating element so that temperature of saturated surface does not exceed 60-65°C, fullerene solution is supplied in organic dissolvent onto product surface so that complete surface is wetted, and impregnation is carried out for 30-45 minutes.
Method of manufacturing of pottery ware and ceramic product / 2348599
Process of decoration of ceramic ware may be used in creation of various ceramic products possessing decorative and decorative - utilitarian function. Method of manufacturing of pottery wares includes product forming out of loamy raw material, preliminary drying reaching leather - solid state, decoration with colored engobes, final drying and burning. During process of decoration spot of application of background engobe is restricted by at least one local spot, formed by one closed circuit of cutting, at least, one layer of background engobe of the color contrast to that of the foundation is applied on the foundation; there after the product is dried and texturised by cutting of the background layer with applied engobes uncovering foundation of the product; there after received decorative elements are painted with multicolored engobes and refreshed by additional cutting getting as a result corresponding ceramic product. Cutting is conducted with V-shaped profile and/or V-shaped profile and undercutting and/or rounding - off of the profile uncovering foundation of the product.
Thermostatic coating composition Thermostatic coating composition / 2248954
Claimed composition contains (mass %): potassium metasilicate with module of at least 4.5 and density of 1.185-1.195 g/ml 24-30; distillated water 23-37; and modified zirconium(IV) oxide of high purity as a pigment. Coating composition of present invention is useful in passive thermostatic systems for spacecrafts.
High-temperature coating / 2253638
Invention is related to aircraft industry and intended to use for protection of nonmetallic materials based on silicon carbide matrix and carbon fiber filler against oxidation. High-temperature coating is composed of, wt %: silicon 4-6, boron 2-4m hafnium oxide 60-65, hafnium boride 6-10 and, additionally, hafnium silicides 7-10 and silicon boride 2-4. Resulting carbon-silicon composites are resistant to temperature 2000°C.
Heat-resistant coating Heat-resistant coating / 2255076
Invention relates to coatings to protect parts of exhaust system of gliders made from heat-resistant alloys and corrosion-resistant steels against high-temperature gas corrosion under operation at temperatures up to 600°C. Coating contains, wt %: SiO2 20.0-36.5, B2O3 4.0-5.0, Al2O3 5.0-6.0, BaO 5.0-6.0, CaO 2.0-4.0, MgO 0.5-1.5, TiO2 1.5-2.5, Cr2O3 15.0-17.0, Na2O 0.6-0.7, P2O5 0.5-1.5, sodium liquid glass 23.0-27.0, and mineral silica-based complex compound 5.0-6.0 composed of, wt %: SiO2 56.25-58.05, Al2O3 34.3-35.1, CaO 1.0-1.2, MgO 1.0-1.1, K2O 2.5-2.6, Na2O 0.6-0.7, TiO2 1.6-1.8, SO3 0.15-0.25, Fe2O3 0.8-1.0, or, instead of SiO2 56.25-58.05, SiO2 35.25-40.05 and SiB4 18.0-21.0. Reliability of operation with thus coated parts is increased by a factor of 1.5-2.
Engobe Engobe / 2257364
The invention is pertaining to the field building industry; production of ceramic building materials, for example, it may be used in production of the color ceramic bricks applied for an external lining of buildings, facilities and formation of interiors. The engobe for a facing ceramic bricks contains in its composition (in mass %): a wollastonite concentrate - 31-35, a colorless transparent glassbats - 35-40, burnt gault or burnt clear gault - the rest. The engobe is prepared using a slip process by a wet grist in a ball mill. The acicular form of wollastonite crystals provides a good hiding of an angobe coating, and in a combination with glass bats - an adhesive strength of the coating. Blockading of the open pores on the face surface of an item due to a densely sintered angobe layer results in a decrease of the general hydraulic conductivity of the items and at a sufficient cohesive strength of a decorative layer with the ceramic basis improves frost resistance of the decorated lining ceramics. The high chemical purity of the wollastonite concentrate and utilization of colorless transparent glass bats (with the contents of staining oxides of no more than 0.20 %) increases the coating whiteness and improve the decorative properties of the angobed items. The necessary color palette of the coating depends on the choice of a ceramic pigment. The technical problem of the invention is to increase the strength of adhesion with the ceramic base, to improve whiteness and frost resistance of the items.
Method of passivation of contact surface of refractory reservoir made from mullite and slip used for realization of this method / 2266880
Proposed method includes application of slip on contact surface; slip contains 50-70 mass-% of aluminum oxide powder Al2O3 and 30-50 mass-% of binder which contains 50-60 mass-% of aluminum chloride AlCl3 dissolved in 40-50 mass-% of water. Then reservoir is dried and roasted in oxidizing atmosphere at temperature of 1450-15500°C for at least 20 min. In some cases, use is made of slip containing water-soluble organic dye. Used as organic dye is methylene blue at total content of 0.1-0.5 mass-%. Specification gives description of slip used for passivation of contact surface of refractory reservoir. Proposed method makes it possible to form absolutely inert coat on contact surfaces of ceramic reservoirs relative to alloys of titanium coat.
Ceramic filter element manufacturing process Ceramic filter element manufacturing process / 2274622
Invention relates to manufacturing filter element suited to filter pulps and effluents from galvanic shops. Preliminarily, magnesium montmorillonite cake is prepared at temperatures sufficient to remove gas-forming components, which cake is then ground to particle size not less than pore size in permeable surface of substrate. Mix is further prepared from naturally occurring magnesium montmorillonite and cake, content of the latter in mix being within a range of 30 to 70%. Thereafter, aqueous suspension is prepared comprising uniform fused corundum and above mix in solid phase. This suspension is used to deposit membrane material components. Subsequent heat treatment is conducted with isothermal exposure periods at temperatures sufficient to remove physically adsorbed and crystallization moisture, to cause residual gas emission, and melting of fusible components of membrane layer. Cooling to 400°C is conducted under forced air circulation conditions and, below 400°C, under natural heat convection conditions.
Porous aluminum-wetting ceramic material Porous aluminum-wetting ceramic material / 2281987
Claimed material contains open-porous or gauze ceramic structure, wherein surface of said structure under using is exposed by melted aluminum and wetted therewith. Structure is made of ceramic material which is inert and resistant to melted aluminum such as alumina, and aluminum-wetted material including metal oxide and/or partially oxidized metal such as manganese, cobalt, nickel, copper or zinc, which is capable to interact with melted aluminum to produce surface layer, containing alumina, aluminum and metal, obtained from metal oxide and/or partially oxidized metal. Ceramic structure includes coating from aluminum-wetted material carried on inert and resistant material or comprises mixture of inert and resistant material and aluminum-wetted ceramic material.
Method of production of composite material Method of production of composite material / 2304567
Proposed material possesses high erosion resistance and high-temperature strength at working temperatures of 1000-1700C. Method of production of composite material includes impregnation of ceramic fiber blank with inorganic sol, molding and dehydration of blank by deformation followed by drying at temperature of 50-80C continued for 1-3 h. Dried blank is additionally subjected to impregnation with silicon organic polymer containing nano-powder SiC and secondary drying at temperature of 100-150C continued for 1-3 h. Content of nano-powder SiC in silicon organic polymer is equal to 1-5 mass-%. Heat treatment of blank is performed at temperature of 700-800C for 3-5 h.
Molded ceramic article with photocatalytic coat and method of manufacture of such article / 2318781
Molded article has porous photocatalytic active coat which contains TiO2 or Al2O3 (aluminum oxide C) in combination with other oxides of metals, for example SiO2; its specific surface ranges from about 25 m2/g to about 200 m2/g. Average diameter of pores or capillaries of articles ranges from 0.1 to 5 mcm. At least one bossy layer may be placed in between oxidoceramic material of base and photocatalytic active coat. Surface of article may be waterproofed. Method of manufacture of article includes preparation of suspension of photocatalytically active material, application of this suspension on article for forming the required layer and hardening of this layer.
Method of application of protective coats on articles made from carbon graphite materials (versions) / 2320614
Proposed coat is used for articles working in atmosphere of silicon or germanium vapor. Proposed method includes application of protective coat on articles made from carbon graphite materials; protective coat contains the following components, mass-%: silicon nitride ground to fractions of 200 mcm, 30-85; binder at viscosity of 10-300 stokes diluted to required consistency, 15-70. Binder contains mixture of 40-60-% solution including 70-75% of phenol formaldehyde resin, 18-22% of dichloropropanol and 5-10% of benzyl and/or isopropyl alcohol, 40-60% of powder containing 90-95% of finely dispersed graphite and 5-10% of para-toluene- sulfochloride and/or toluene sulfonic acid. Then, article is dried in drying cabinet first at temperature of 60-70 C for 20-30 minutes and then at temperature of 230-260 C for 40-60 minutes, after which article is cooled in atmosphere. According to second version, prior to application of protective coat, article is impregnated with aqueous solution of saccharose at content of sugar of 40-80% for 5-10 minutes. According to third version, article is subjected to preliminary impregnation in suspension containing 20-30% of solution by weight containing 70-75% of phenol formaldehyde resin, 18-22% of dichloropropanol and 5-10% of benzyl and/or isopropyl alcohol, 25-30% of finely dispersed graphite powder at addition of 5-10% of para-toluene-sulfochloride and/or toluene sulfonic acid and 40-50% of ethanol.
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.