RussianPatents.com

Foundry alloy

Foundry alloy
IPC classes for russian patent Foundry alloy (RU 2521916):
Another patents in same IPC classes:
Conditioning agent / 2521915
Invention relates to foundry and can be used for production of high-strength iron with globular graphite without structurally free cementite as-cast based on metalised pellets and steel wastes. Proposed agent contains components in the following ratio in wt. %: cerium - 7-10, lanthanum - 3.5-5.0, yttrium - 15-20, aluminium making the rest.
Chemical-electric method for production of aluminium-zirconium master alloys Chemical-electric method for production of aluminium-zirconium master alloys / 2515730
In the method anode galvanostatic polarisation of zirconium with current density of 0.5-4.0 mAcm-2 is carried out within 1-5 hours in the melted chlorides of alkali metals or a mixture of chlorides of alkali metals and alkali-earth metals, which contain melted aluminium or aluminium-magnesium alloy at a temperature of 700-750°C in argon environment.
Method for obtaining aluminium-scandium alloy combination / 2507291
Method for obtaining aluminium-scandium alloy combination involves aluminium melting, aluminothermic reduction of scandium from initial charge containing scandium fluoride, calcium chloride and sodium fluoride under cover flux and further exposure of the obtained molten metal. Prior to aluminothermic reduction the initial charge is placed into a melting pot and pre-heated to the temperature of 790°C, and then, it is added to molten aluminium and aluminothermic reduction is performed at the temperature of at least 830°C. After the molten metal exposure, separate pouring of salt and metal melt is performed. An initial charge containing the following component ratio, wt %, is used: scandium fluoride - 40-45; potassium chloride - 40-45; sodium fluoride is the rest. Pre-heating of the initial charge can be performed in a graphite melting pot pre-saturated with cryolite, or in a melting pot from glass carbon.
Modifying alloying bar al-sc-zr / 2497971
Alloying bar contains the following, wt %: scandium 0.8-1.5, zirconium 0.8-1.5; at least one of the following elements: manganese up to 0.10, chrome up to 0.10, titanium up to 0.10, molybdenum up to 0.10, iron up to 0.30, silicon up to 0.20, and aluminium is the rest.
Method for obtaining titanium-containing alloy for steel alloying Method for obtaining titanium-containing alloy for steel alloying / 2497970
Reaction powder mixture containing 45-88 wt % of titanium-containing component and 12-55 wt % of silicon-containing component is prepared. Powders with particle size of less than 5 mm are used. After that, an exothermic reaction of combustion in inert atmosphere is initiated in the mixture.
Method to produce aluminium-copper alloys / 2486271
Aluminium alloy is prepared, reheated over alloy liquidus curve temperature. Copper is added into the aluminium melt in the form of a wire, at the same time electric current is sent between the wire and the melt. Wire melting is carried out without formation of an arc at the ratio of current density to speed of wire feed equal to 0.3-1.0·1010 A·s/m.
Alloy of out-of-furnace production of steel and iron and blend to this end Alloy of out-of-furnace production of steel and iron and blend to this end / 2483134
Proposed composition contains the following substances, in wt %: titanium - 30- 50, zirconium - 1-25, silicon - 15-30, aluminium - 0.1-3, iron making the rest. For production of proposed alloy the blend is used that contains ilmenite concentrate, rutile, coal, quartz sand, quartzite, and zirconium concentrate.
Alloy for alloying of steel with titanium / 2482210
Alloy contains the following components, wt %: titanium 45-75, silicon 5-45, aluminium 5-15, carbon not more than 0.2, iron - balance, at the same time the mass ratio of titanium to aluminium is within the limits from 3:1 to 15:1.
Method for production of aluminium-zirconium ligature (versions) / 2482209
For production of aluminium-zirconium ligature, aluminothermal recovery of zirconium is carried out from its compounds in the environment of melted metal halogenides. Zirconium is recovered from its fluoride or oxide, and also from fluozirconate or oxifluozirconate of alkaline or alkaline-earth metal in presence of potassium chloride, sodium fluoride and aluminium fluoride, introduced into the melt or formed in the process of aluminothermy. The temperature of the process amounts to 850-1150°C. Recovery is carried out under the layer of chloride cover flux, containing potassium and sodium chlorides at the following ratio of components, in the mixture, wt %: potassium chloride 42-45, sodium chloride - balance. The melt is soaked for 15-30 minutes, and bars are poured. The invention makes it possible to produce bars of ligature with homogeneous structure with dimensions of intermetallides of up to 15-30 mcm, at the same time non-return losses of zirconium are reduced down to 7-9%, environmental characteristics of the process are improved.
Alloy combination for production of castings from high-strength cast-iron (versions) / 2480530
As per Version 1, alloy combination contains the following, wt %: silicon 22.0-30.0, magnesium 9.0-12.0, cerium 0.4-0.6, copper is the rest; as per Version 2, alloy combination contains the following, wt %: silicon 22.0-30.0; magnesium 9.0-12.0, misch metal 0.8-1.2, and copper is the rest.
Conditioning agent / 2521915
Invention relates to foundry and can be used for production of high-strength iron with globular graphite without structurally free cementite as-cast based on metalised pellets and steel wastes. Proposed agent contains components in the following ratio in wt. %: cerium - 7-10, lanthanum - 3.5-5.0, yttrium - 15-20, aluminium making the rest.
Cast iron alloying with vanadium / 2520929
Invention relates to ferrous metallurgy and foundry, particularly, to improvement of properties of cast iron used for production of parts operated under variable-sign loads. In compliance with this invention, vanadium compound is reduced in cast iron melt under flux ply in the presence of reducer. Vanadium pentoxide (V2O5) is used as said vanadium compound. Ferrosilicon (FS75) is used as said reducer. Note here that vanadium is introduced into cast iron by chemical dispersion at feed to melt surface of the mix containing 30% of V2O5 , 20% of FS75 and 50% of CaO.
Method of iron modification / 2515160
Proposed method comprises furnacing of preset-composition iron, filling the cover material on iron surface for it to be cured to a dense thick cover, and adding of hard modifier based on cerium, magnesium and nickel. Said hard modifier is held in water before adding to the melt. Iron furnacing and modifying are performed in induction furnace mould at iron melt level not higher then induction furnace top coil level and at inductor current frequency of 50-2400 Hz. Note that prior to filling the cover material on iron surface, rated power fed to furnace inductor is decreased by 5-50%. Now, produced iron is discharged into ladle.
Making of cold-resistant cast iron Making of cold-resistant cast iron / 2509159
Cast iron melt is processed in the mould by feeding modifying mix. The latter contains a spheroidising additive composed of ferromagnesium silicon and graphitising additive composed of boric acid. Said additives are added in amounts that allows obtaining 0.03-0.06% of residual magnesium and 0.005-0.007% of boron in finished casting. Then, spontaneous annealing of casting is performed in the mould for 60 minutes.
Method for ladle modification of molten cast iron with light-weight magnesium-containing alloy combinations Method for ladle modification of molten cast iron with light-weight magnesium-containing alloy combinations / 2500819
In rear part of a ladle bottom, opposite its nose part, there located by means of an inclined chute depending on weight of treated cast iron is one or more molten welded tightly closed containers from steel sheets with thickness of 1.5…2.0 mm, with tightly packed spheroidising modifying agent in the form of magnesium-containing alloy combination and bulk volume of up to 10 kg; after that, the ladle is intensely filled with molten cast iron for the period of not more than 40 seconds with direction of a jet to a free part of the ladle bottom.
Method for obtaining high-strength cast-iron with vermicular graphite by intra-mould modification using alloy combinations of fe-si-rem system Method for obtaining high-strength cast-iron with vermicular graphite by intra-mould modification using alloy combinations of fe-si-rem system / 2497954
Method involves loading to a reaction chamber of a pouring gate system of modifying agent charge in the form of Fe-Si-REM alloy combination providing initial concentration of rare-earth metals in molten cast-iron of 0.075%; then, after the casting mould is assembled, a lump of FS75 with the weight of 0.24-0.46% of metal consumption of the mould is laid in its pouring basin for graphitising pre-modification, and it is filled with molten cast-iron from the furnace.
Method for obtaining nanostructured recarburising agent for out-of-furnace treatment of high-strength cast-iron with ball-shaped and compacted graphite Method for obtaining nanostructured recarburising agent for out-of-furnace treatment of high-strength cast-iron with ball-shaped and compacted graphite / 2495134
Method involves preparation of carbon-containing composition containing the following components, wt %: anthracite 50-85, graphite scrap 5-25, broken electrodes 5-25, graphite structure 5-15 that is crushed to the fraction of 0.1-3.2 mm, burnt at the temperature of 500-1500°C, graphite spheroids are formed in the material structure at high specific pressure of up to 20 GPa and subject to high-temperature exposure at 1800-2500°C in a reducing medium so that graphite nanostructures with the size of up to 100 nm are formed, which represent graphite nanoclusters with a hexagonal pattern.
Production method of high-strength cast-irons with ball-shaped or compacted graphite based on nanostructured recarburising agent / 2495133
Proposed method involves melting of a charge in a melting unit, heat treatment of the melt at 1300…1650°C; at that, when obtaining cast-iron with ball-shaped graphite, primary modification is performed with nanostructured recarburising agent in the quantity of 0.10…0.25% of the melt weight, and secondary spheroidising modification is performed by means of a modifying agent containing 5…7% of magnesium, in the quantity of 1.2…2.0% of the melt weight, and when obtaining cast-iron with compacted graphite, primary modification is performed with nanostructured recarburising agent in the quantity of 0.10…0.25% of the melt weight, and secondary compacting modification is performed with a modifying agent containing 3…5% of magnesium and 3…6% of rare-earth elements in the quantity of 0.3…0.8% of the melt weight.
Method of production of aluminium iron with compact inclusions of graphite / 2487950
Proposed method comprises making iron melt with aluminium content of 9.8-19.7%, pouring said melt in metal mould placed in salt melt at 950-1100°C, cooling said melt and isothermal curing of crystallised casting at 950-1100°C for 0.5-2 hours.
Alloy combination for production of castings from high-strength cast-iron (versions) / 2480530
As per Version 1, alloy combination contains the following, wt %: silicon 22.0-30.0, magnesium 9.0-12.0, cerium 0.4-0.6, copper is the rest; as per Version 2, alloy combination contains the following, wt %: silicon 22.0-30.0; magnesium 9.0-12.0, misch metal 0.8-1.2, and copper is the rest.
Briquette used in manufacture of cast iron / 2247155
Briquette includes silicon-containing material, carbon-containing material, and cement as binder. Silicon-containing material includes metallurgical silicon carbide and carbon-containing material includes carbon-siliceous mixture.

FIELD: process engineering.

SUBSTANCE: invention relates to foundry and can be used for production of high-strength iron with globular graphite without structurally free cementite as-cast. Proposed alloy contains the following substances, in wt. %: rare earth metals - 10-20, silicon - 20-30, scandium - 1-3, aluminium making the rest. Foundry alloy comprises 1-3 wt. % of lanthanum in rare earth metal compound.

EFFECT: higher mechanical properties, ruled out chill in thick-wall casts.

2 cl, 1 ex, 2 tbl

 

The invention relates to foundry and can be used to obtain high-strength nodular cast iron without structurally free cementite in melted condition.

Known master alloy of the following composition in wt.%:

Barium 10-30
Calcium 7-30
Silicon 1-15
Aluminum 30-70
Rare earth metals 2-35
Iron Rest

(USSR author's certificate No. 561745, CL SS 35/00).

However, the disadvantages of this invention is that the presence of calcium in the ligature causes oslavany in the process of modification and heat loss of liquid iron, the presence of calcium, iron, silicon results in high melting temperature alloys and instability of receipt of the modification. In addition, when using this ligature is practically impossible to eliminate chill in thin section castings (less than 7-9 mm).

The closest of the present invention to the technical essence and the achieved efficiency is the is the master alloys of the following composition in wt.%:

Rare earth metals 28-35
Silicon 45-47
Yttrium 3-4
Aluminum 4-6
Calcium 3-4
Iron Rest

(Handbook of cast iron casting, ed. 3-e, L.: "engineering", 1978, S. 243-246).

However, the disadvantages of the ligatures are the instability of the effect of the modification, due to the high melting temperature (1420-1450°C), high consumption of REM to obtain the spherical graphite of 2.5-3.0% by weight of the liquid metal, the tendency of iron to chill in thin section castings /less than 5-7 mm/.

Technical problem which the claimed invention is directed, is the enhancement of the mechanical properties of cast iron and elimination chill in thin-walled castings.

This object is achieved in that the alloys containing rare earth metals, silicon and aluminum, according to the invention further comprises scandium in the following ratio of components, wt.%:

10-20
Silicon 20-30
Scandium 1-3
Aluminum Rest

In the composition of the rare earth metal ligature contains 1-3% wt. lanthanum.

Thus, the disadvantages inherent in the known alloys, removed, excluded from its composition calcium, decreases the content of silicon and rare-earth metals, decreases the melting temperature to achieve a uniform distribution of components ligatures in liquid iron, eliminates the tendency of iron to chill in thin-walled castings thickness of 5-7 mm

Aluminum promotes uniform distribution of spheroidizing elements during melting ligatures, dramatically reduces the melting temperature (800-900°C).

The ligature is obtained by melting aluminum 900-1000°C and dissolve in it the other components ligatures.

Received the ligature is injected at the bottom of the bucket with cryolite in the number(0,1-0,2%) 2,0-2,5% the weight of the liquid metal, then fill it with liquid iron 3,4-3,8% C, 1.5 to 2.0% Si, 0.5 to 0.8% Mu, 0,1-0,12% P, 0,05-0,07% s

Examples of implementation of the method.

Table 1 shows the results of the mechanical tests, measuring the depth of chill and metallographic analysis of iron-modified proposed ligature

The number of ligatures and offer prototype to 2.5% by weight of the liquid metal.

Comparative tests of mechanical properties showed that to obtain high-strength nodular cast iron without chill in thin-walled castings necessary Supplement offer ligatures 2.0 to 2.5% by weight of the liquid metal. To maximize the effect of inoculation of cast iron using ligatures prototype you want to enter it into liquid iron in the amount of 3.0 wt.%. In the casting section of 0.5-1.1 mm is observed chill, see table 2.

The consumption of expensive rare-earth metals decreases in 2 times in comparison with the prototype.

Unlike ligatures prototype of the proposed ligature is well absorbed in the iron at 1350-1400°C, the effect of the modification is stable.

1. The master alloys containing rare earth metals, silicon and aluminum, characterized in that it further comprises scandium in the following ratio, wt.%:

rare earth metals 10-20
silicon 20-30
scandium 1-3
aluminum else

2. The ligature according to claim 1, characterized in that it contains 1-3% wt. lanthanum in the composition of the rare earth metals.

 

© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.