RussianPatents.com

Conditioning agent

IPC classes for russian patent Conditioning agent (RU 2521915):
Another patents in same IPC classes:
Chemical-electric method for production of aluminium-zirconium master alloys Chemical-electric method for production of aluminium-zirconium master alloys / 2515730
In the method anode galvanostatic polarisation of zirconium with current density of 0.5-4.0 mAcm-2 is carried out within 1-5 hours in the melted chlorides of alkali metals or a mixture of chlorides of alkali metals and alkali-earth metals, which contain melted aluminium or aluminium-magnesium alloy at a temperature of 700-750°C in argon environment.
Method for obtaining aluminium-scandium alloy combination / 2507291
Method for obtaining aluminium-scandium alloy combination involves aluminium melting, aluminothermic reduction of scandium from initial charge containing scandium fluoride, calcium chloride and sodium fluoride under cover flux and further exposure of the obtained molten metal. Prior to aluminothermic reduction the initial charge is placed into a melting pot and pre-heated to the temperature of 790°C, and then, it is added to molten aluminium and aluminothermic reduction is performed at the temperature of at least 830°C. After the molten metal exposure, separate pouring of salt and metal melt is performed. An initial charge containing the following component ratio, wt %, is used: scandium fluoride - 40-45; potassium chloride - 40-45; sodium fluoride is the rest. Pre-heating of the initial charge can be performed in a graphite melting pot pre-saturated with cryolite, or in a melting pot from glass carbon.
Modifying alloying bar al-sc-zr / 2497971
Alloying bar contains the following, wt %: scandium 0.8-1.5, zirconium 0.8-1.5; at least one of the following elements: manganese up to 0.10, chrome up to 0.10, titanium up to 0.10, molybdenum up to 0.10, iron up to 0.30, silicon up to 0.20, and aluminium is the rest.
Method for obtaining titanium-containing alloy for steel alloying Method for obtaining titanium-containing alloy for steel alloying / 2497970
Reaction powder mixture containing 45-88 wt % of titanium-containing component and 12-55 wt % of silicon-containing component is prepared. Powders with particle size of less than 5 mm are used. After that, an exothermic reaction of combustion in inert atmosphere is initiated in the mixture.
Method to produce aluminium-copper alloys / 2486271
Aluminium alloy is prepared, reheated over alloy liquidus curve temperature. Copper is added into the aluminium melt in the form of a wire, at the same time electric current is sent between the wire and the melt. Wire melting is carried out without formation of an arc at the ratio of current density to speed of wire feed equal to 0.3-1.0·1010 A·s/m.
Alloy of out-of-furnace production of steel and iron and blend to this end Alloy of out-of-furnace production of steel and iron and blend to this end / 2483134
Proposed composition contains the following substances, in wt %: titanium - 30- 50, zirconium - 1-25, silicon - 15-30, aluminium - 0.1-3, iron making the rest. For production of proposed alloy the blend is used that contains ilmenite concentrate, rutile, coal, quartz sand, quartzite, and zirconium concentrate.
Alloy for alloying of steel with titanium / 2482210
Alloy contains the following components, wt %: titanium 45-75, silicon 5-45, aluminium 5-15, carbon not more than 0.2, iron - balance, at the same time the mass ratio of titanium to aluminium is within the limits from 3:1 to 15:1.
Method for production of aluminium-zirconium ligature (versions) / 2482209
For production of aluminium-zirconium ligature, aluminothermal recovery of zirconium is carried out from its compounds in the environment of melted metal halogenides. Zirconium is recovered from its fluoride or oxide, and also from fluozirconate or oxifluozirconate of alkaline or alkaline-earth metal in presence of potassium chloride, sodium fluoride and aluminium fluoride, introduced into the melt or formed in the process of aluminothermy. The temperature of the process amounts to 850-1150°C. Recovery is carried out under the layer of chloride cover flux, containing potassium and sodium chlorides at the following ratio of components, in the mixture, wt %: potassium chloride 42-45, sodium chloride - balance. The melt is soaked for 15-30 minutes, and bars are poured. The invention makes it possible to produce bars of ligature with homogeneous structure with dimensions of intermetallides of up to 15-30 mcm, at the same time non-return losses of zirconium are reduced down to 7-9%, environmental characteristics of the process are improved.
Alloy combination for production of castings from high-strength cast-iron (versions) / 2480530
As per Version 1, alloy combination contains the following, wt %: silicon 22.0-30.0, magnesium 9.0-12.0, cerium 0.4-0.6, copper is the rest; as per Version 2, alloy combination contains the following, wt %: silicon 22.0-30.0; magnesium 9.0-12.0, misch metal 0.8-1.2, and copper is the rest.
Method for obtaining nitrogen-containing alloy for alloying of steel and cast iron, and nitrogen-containing alloy for steel and cast iron alloying / 2479659
Bearing titanium-chrome ferroalloy is crushed to powder with particle size of less than 0.2 mm. Titanium-chrome ferroalloy contains the following, wt %: chrome - 5.0-35.0, titanium - 15.0-30.0, aluminium - 5.0-10.0, silicon - 5.0-8.0, and iron is the rest. Total amount of Ti, Cr, Si, Al is 30.0-82.0 wt %. Powder is loaded to the container that is moved to a SHS reactor; an exothermic burning reaction is initiated in a layer-by-layer mode at nitrogen pressure of 1.0-15.0 MPa.
Cast iron alloying with vanadium / 2520929
Invention relates to ferrous metallurgy and foundry, particularly, to improvement of properties of cast iron used for production of parts operated under variable-sign loads. In compliance with this invention, vanadium compound is reduced in cast iron melt under flux ply in the presence of reducer. Vanadium pentoxide (V2O5) is used as said vanadium compound. Ferrosilicon (FS75) is used as said reducer. Note here that vanadium is introduced into cast iron by chemical dispersion at feed to melt surface of the mix containing 30% of V2O5 , 20% of FS75 and 50% of CaO.
Method of iron modification / 2515160
Proposed method comprises furnacing of preset-composition iron, filling the cover material on iron surface for it to be cured to a dense thick cover, and adding of hard modifier based on cerium, magnesium and nickel. Said hard modifier is held in water before adding to the melt. Iron furnacing and modifying are performed in induction furnace mould at iron melt level not higher then induction furnace top coil level and at inductor current frequency of 50-2400 Hz. Note that prior to filling the cover material on iron surface, rated power fed to furnace inductor is decreased by 5-50%. Now, produced iron is discharged into ladle.
Making of cold-resistant cast iron Making of cold-resistant cast iron / 2509159
Cast iron melt is processed in the mould by feeding modifying mix. The latter contains a spheroidising additive composed of ferromagnesium silicon and graphitising additive composed of boric acid. Said additives are added in amounts that allows obtaining 0.03-0.06% of residual magnesium and 0.005-0.007% of boron in finished casting. Then, spontaneous annealing of casting is performed in the mould for 60 minutes.
Method for ladle modification of molten cast iron with light-weight magnesium-containing alloy combinations Method for ladle modification of molten cast iron with light-weight magnesium-containing alloy combinations / 2500819
In rear part of a ladle bottom, opposite its nose part, there located by means of an inclined chute depending on weight of treated cast iron is one or more molten welded tightly closed containers from steel sheets with thickness of 1.5…2.0 mm, with tightly packed spheroidising modifying agent in the form of magnesium-containing alloy combination and bulk volume of up to 10 kg; after that, the ladle is intensely filled with molten cast iron for the period of not more than 40 seconds with direction of a jet to a free part of the ladle bottom.
Method for obtaining high-strength cast-iron with vermicular graphite by intra-mould modification using alloy combinations of fe-si-rem system Method for obtaining high-strength cast-iron with vermicular graphite by intra-mould modification using alloy combinations of fe-si-rem system / 2497954
Method involves loading to a reaction chamber of a pouring gate system of modifying agent charge in the form of Fe-Si-REM alloy combination providing initial concentration of rare-earth metals in molten cast-iron of 0.075%; then, after the casting mould is assembled, a lump of FS75 with the weight of 0.24-0.46% of metal consumption of the mould is laid in its pouring basin for graphitising pre-modification, and it is filled with molten cast-iron from the furnace.
Method for obtaining nanostructured recarburising agent for out-of-furnace treatment of high-strength cast-iron with ball-shaped and compacted graphite Method for obtaining nanostructured recarburising agent for out-of-furnace treatment of high-strength cast-iron with ball-shaped and compacted graphite / 2495134
Method involves preparation of carbon-containing composition containing the following components, wt %: anthracite 50-85, graphite scrap 5-25, broken electrodes 5-25, graphite structure 5-15 that is crushed to the fraction of 0.1-3.2 mm, burnt at the temperature of 500-1500°C, graphite spheroids are formed in the material structure at high specific pressure of up to 20 GPa and subject to high-temperature exposure at 1800-2500°C in a reducing medium so that graphite nanostructures with the size of up to 100 nm are formed, which represent graphite nanoclusters with a hexagonal pattern.
Production method of high-strength cast-irons with ball-shaped or compacted graphite based on nanostructured recarburising agent / 2495133
Proposed method involves melting of a charge in a melting unit, heat treatment of the melt at 1300…1650°C; at that, when obtaining cast-iron with ball-shaped graphite, primary modification is performed with nanostructured recarburising agent in the quantity of 0.10…0.25% of the melt weight, and secondary spheroidising modification is performed by means of a modifying agent containing 5…7% of magnesium, in the quantity of 1.2…2.0% of the melt weight, and when obtaining cast-iron with compacted graphite, primary modification is performed with nanostructured recarburising agent in the quantity of 0.10…0.25% of the melt weight, and secondary compacting modification is performed with a modifying agent containing 3…5% of magnesium and 3…6% of rare-earth elements in the quantity of 0.3…0.8% of the melt weight.
Method of production of aluminium iron with compact inclusions of graphite / 2487950
Proposed method comprises making iron melt with aluminium content of 9.8-19.7%, pouring said melt in metal mould placed in salt melt at 950-1100°C, cooling said melt and isothermal curing of crystallised casting at 950-1100°C for 0.5-2 hours.
Alloy combination for production of castings from high-strength cast-iron (versions) / 2480530
As per Version 1, alloy combination contains the following, wt %: silicon 22.0-30.0, magnesium 9.0-12.0, cerium 0.4-0.6, copper is the rest; as per Version 2, alloy combination contains the following, wt %: silicon 22.0-30.0; magnesium 9.0-12.0, misch metal 0.8-1.2, and copper is the rest.
Modifying agent for obtaining cast iron with spherical graphite / 2445387
Modifying agent contains the following, wt %: magnesium 7.0-9.0; cerium 8.0-10.0; iron ≤ 1.5; nickel is the rest.
Briquette used in manufacture of cast iron / 2247155
Briquette includes silicon-containing material, carbon-containing material, and cement as binder. Silicon-containing material includes metallurgical silicon carbide and carbon-containing material includes carbon-siliceous mixture.

FIELD: process engineering.

SUBSTANCE: invention relates to foundry and can be used for production of high-strength iron with globular graphite without structurally free cementite as-cast based on metalised pellets and steel wastes. Proposed agent contains components in the following ratio in wt. %: cerium - 7-10, lanthanum - 3.5-5.0, yttrium - 15-20, aluminium making the rest.

EFFECT: higher hardness and ductility.

1 ex, 1 tbl

 

The invention relates to foundry and can be used to obtain high-strength nodular cast iron without structurally free cementite in melted state on the basis of metallized pellets and steel waste.

Known modifier of the following composition, wt.%:

Magnesium from 0.01 to 4.9
Rare earth metals 1-40
Aluminum 20-60
Barium 1-30
Calcium 5-30
Iron rest

(USSR author's certificate No. 428344, CL SS 35/00).

However, the disadvantages of this modifier are the instability of the effect of the modification, due to the high melting temperature (>1350°C) and smoke during its introduction into molten cast iron.

Closest to the proposed to the technical essence and the achieved result is a modifier of the following composition, wt.%:

Rare earth metals 20-50
Yttrium 5-15
Aluminum rest

(USSR author's certificate No. 436882, CL SS 35/00).

However, the disadvantage of this modifier is that it contains a large number of rare earth metals. When the content of rare earth metals in the alloy above 15% in the structure of cast iron disappears globular graphite and mechanical properties deteriorate.

Technical problem which the claimed invention is directed, is to increase the strength and ductility of cast iron.

This object is achieved in that the proposed modifier contains components in the following ratio, wt.%:

Cerium 7-10
Lanthanum 3,5-5,0
Yttrium 15-20
Aluminum rest

The optimal ratio of yttrium, cerium and lanthanum are respectively equal to 2:1:0.5 in.

Examples of implementation of the method

The modifier is introduced into the liquid pig iron containing, wt.%: 3,0-3,6 carbon, 1.5 to 2.0 silicon, 0.5 to 1.0 manganese, 0.1 to 0.15 phosphorus, 0,05-0,07 sulfur, method pogruzheny is in the amount of from 1.0 to 1.25% by weight of the liquid metal. Melting point modifier 720-760°C. the Modifier is well absorbed in the iron. At its introduction in liquid iron (at 1300-1600°C) bioeffect is not observed, the effect of receiving the spherical graphite is stable. On the wedge samples no chill.

The table below shows the formulations and known modifiers.

Table 1
No.
p/p
The modifier composition, wt.%: Mechanical properties
REM Y Al Ultimate tensile strength, kg/mm2 Elongation, % Hardness HB
CE La
1 7,0 3,5 15,0 74,5 54,2-59,3 4,0-4,3 260-270
2 8,5 4,25 of 17.5 69,75 60-64,4 4,4-5,2 280-310
3 10,0 5,0 20,0 65,0 to 59.4 64,0 4,1-5,0 280-310
4 28,0 15-20 rest 40,3-45,0 2,5-2,8 230-240

Modifier containing rare earth metals (REM), and aluminum, characterized in that as REM it contains cerium, Latin and yttrium in the following ratio, wt.%:

Cerium 7-10
Lanthanum 3,5-5,0
Yttrium 15-20
Aluminum rest

 

© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.