RussianPatents.com
|
Polymer photovoltaic module and method for production thereof. RU patent 2519937. |
|
FIELD: chemistry. SUBSTANCE: polyaniline is doped with a heteropolyanionic complex of the 2-18 series, having chemical formula [P2W18O62]6-. A doped polyaniline film 1 is deposited on a thin transparent conducting layer which may consist of indium (III) oxide or tin (IV) oxide 2, which in turn is sputtered onto a material 3, having high transmission capacity for electromagnetic waves in the range from 3·10-2 to 4·10-6 cm. Said material with the sputtered conducting layer and the polyaniline film forms one of the electrodes of the photovoltaic module, and a second counter electrode, which also serves as back wall of the article, can be made of conducting material 4, on the outer side of which are attached thermogenerators 5 with air or water radiators for removing heat 6, connected to each other by series-parallel electrical circuits 7, and the electrodes held with each other by side walls, which can be made of any non-aggressive dielectric material 8, and an aqueous electrolyte is poured between the electrodes, where pH of the electrolyte 9 may vary from 5 to 3; current terminals are respectively attached to the conducting material with the polymer film and to the conducting back wall of the article, and to output terminals of the thermogenerators 10 to form two independent electrical circuits. The invention also relates to a method of producing said module. EFFECT: photovoltaic module has high efficiency of converting electromagnetic energy to electrical energy. 2 cl, 1 ex, 1 dwg
|
Grate of photogalvanic cells with mechanical detachment of cells relative to their support / 2518021 Use: to implement solar generators panels to ensure electricity supply of spacecrafts, in particular satellites. Essence of invention consists in the fact that each photogalvanic element of the grate is mounted on the substrate using the soft and self-adhesive and easily detachable fastening device, at that the rear side of each cell and the front side of the substrate are coated with a layer that improves their properties of heat radiation. |
Silicon multi-junction photoelectric converter with inclined structure and method for production thereof / 2513658 Present invention relates to silicon multi-junction photoelectric converters of solar cell panels. The structure of an "inclined" silicon monocrystalline multi-junction photoelectric converter according to the invention includes diode cells with n+-p--p+ (p+-n--n+) junctions which are parallel to a horizontal light-receiving surface; the diode cells include n+(p+) and p+(n+) regions of n+-p--p+(p+-n--n+) junctions through which they are connected into a single structure by metal cathodes and anodes placed on the surface of n+(p+) and p+(n+) regions to form corresponding ohmic contacts - connections, wherein the n+(p+) and p+(n+) regions and corresponding cathodes and anodes are placed at an angle in the range of 30-60 degrees to the light-receiving surface; the metal cathodes and anodes are placed on their surface partially, and partially lie on the surface of an optically transparent dielectric which is placed on the surface of n+(p+) and p+(n+) regions, wherein they form an optical reflector with the metal electrodes and the optically transparent dielectric. Also disclosed is a method of making the described structure of an "inclined" silicon monocrystalline multi-junction photoelectric converter. |
Combined production of heat and electric energy for residential and industrial buildings with application of solar energy / 2513649 In accordance with the invention claimed solar-powered generator (100) contains thermoelectric elements adjoining solar elements and located below solar elements. Concentrated flow of solar energy is provided. Heat sink (104), with changeable temperature and efficiency, contacts with cold soldered seam (108) of thermoelectric device (103). Thermal resistance is calculated with respect to energy flow, which results in creation in thermoelectrical device (103) of temperature gradient equal to several hundreds of Kelvin degrees. Solar element preferably contains semiconductor with large width of prohibited energy zone. Generator (100) preserves relatively suitable efficiency (efficiency factor) in some range of cold seam (108) temperature. System of hot water can serve as heat sink (104). High values of efficiency factor are obtained due to application of nanocomposite thermoelectrical materials. One-piece construction of solar element and thermoelectrical elements provides additional advantages. |
Multipurpose solar power plant / 2505887 Multipurpose solar power plant (hereinafter referred to as MSPP) refers to renewable power sources, and namely to use of solar radiation to generate electric power, provide hot water supply and natural illumination of rooms of different applications, which contains the following: an optically active transparent dome representing a rectangular biconvex lens, a photovoltaic panel, a solar collector, round flat horizontal dampers of hollow light guides, hollow light guide tubes, a heat-receiving copper plate of the solar collector, a solar light dissipator, micromotors of round flat horizontal dampers of hollow light guide tubes, round light-emitting-diode lamps, storage batteries, light and temperature sensors, an electronic control unit, a control panel, a storage tank, a heat exchanger, a pump, a check valve, six-sided copper pipelines, an inverter and a support with support racks to support MSPP structure. |
Solar module with concentrator (versions) and method of its manufacturing / 2503895 In a solar module with a concentrator comprising a transparent focusing prism with an angle of complete inner reflection where n - coefficient of prism material refraction, with triangular cross section, having an inlet face, to which radiation drops along the normal line to the surface of the inlet face, and a face of radiation re-reflection, forming a sharp double-faced angle φ with the inlet face, and the face of output of the concentrated radiation and a reflection device, forming with the re-reflection face a sharp double-faced angle ψ, which is arranged unidirectionally with the sharp double-faced angle φ of the focusing prism, the reflection device comprises a set of mirror reflectors with length L0 having identical sharp angles ψ, set at a certain distance from each other, on the surface of the input face there are additional mirror reflectors that are inclined to the surface of the input face at the angle 90°-δ, which is arranged as differently directed with a sharp double-faced angle φ of the focusing prism, the lines of contact of the plane of the additional mirror reflector with the input face and the line of contact of the plane of the mirror reflector of the re-reflection device with the re-reflection face are in the same plane, perpendicular to the surface of the input, the length of projection of the additional mirror reflector to the surface of the input face is more than the length of the projection of the mirror reflector of the reflection device to the surface of the input face by the value In another version of the solar module with a concentrator comprising a transparent focusing prism with triangular cross section, with the angle of input of beams β0 and the angle of total inner reflection where n - coefficient of the prism, having an input face and the face of re-reflection of radiation, which form a common double-faced angle φ, the face of output of the concentrated radiation and a reflection device, which forms with the re-reflection face a sharp double-faced angle ψ, which is arranged unidirectionally with the sharp double-faced angle φ of the focusing prism, the reflection device comprises a set of mirror reflectors installed at a certain distance from each other with length L0 with identical sharp angles ψ, with a device of rotation relative to the re-reflection face, on the surface of the input face there are additional mirror reflectors, which are inclined to the surface of the input face at the angle 90°-δ and are made in the form of louvers with a rotation device relative to the surface of the input face, and the angle of inclination of additional mirror reflectors to the surface of the input face is arranged differently directed with the sharp double-faced angle φ of the focusing prism, axes of the rotation device of the additional mirror reflector on the face of input and axis of the mirror reflector rotation device on the re-reflection device with the face of re-reflection are in the same plane, which is perpendicular to the surface of the input, the length of projection of the additional mirror reflector to the input surface is more than the length of projection of the mirror reflector of the reflection device to the input surface by the value In the method of manufacturing of a solar module with a concentrator by making a focusing prism from optically transparent material, installation of a radiation receiver, a re-reflection device with mirror reflectors from tempered sheet glass or another transparent sheet material, they make and seal the walls of the cavity of the focusing prism with a sharp double-faced angle at the top equal to 2-12° and then they fill the produced cavity with an optically transparent medium, they install tightly a radiation receiver and assemble additional mirror reflectors with rotation devices on the working surface of the focusing prism and a rotation device for the re-reflection device. |
Making solar cell modules / 2501120 Disclosed is use of a) polyalkyl(meth)acrylate and b) a compound of formula (I), wherein residues R1 and R2 independently denote an alkyl or cycloalkyl with 1-20 carbon atoms, to make solar cell modules, primarily for making light concentrators of solar cell modules. (I). Also disclosed is a solar cell module and a version of said module. The solar cell module has operating temperature of 80°C or higher; full light transmission of moulding compounds in the wavelength range from 400 to 500 nm is preferably at least 90%; full light transmission of moulding compounds in the wavelength range from 500 to 1000 nm is preferably at least 80%. |
Back sheet for solar cell module and solar cell module / 2498458 Back sheet for a solar cell module has a substrate sheet and a cured layer of a coating film made of coating material, formed on one side or each side of the substrate sheet, wherein said coating material contains a fluoropolymer (A), having repeating units based on fluoro-olefin (a), repeating units based on a monomer (b) which contains a cross-linking group, and repeating units based on a monomer (c) which contains alkyl groups, where the C2-20 linear or branched alkyl group does not have a quaternary carbon atom, and unsaturated polymerisable groups are bonded to each other through an ether bond or an ester bond. Also disclosed is a solar cell module using said back sheet and versions of a method of making the back sheet for the solar cell module. |
Flexible photoelectric module / 2495513 Flexible photoelectric module comprises the following serially arranged components: a lower bearing film, a lower reinforcing net, a lower fixing film, electrically connected solar elements from single-crystal silicon, an upper fixing film, an upper reinforcing net and an upper bearing film. The bearing and fixing films are made of a material, which is transparent for sun light, and reinforcing nets are made of polymer threads, which are transparent for sun light and are impregnated with a substance or containing such substance with low coefficient of light absorption and scattering. Reinforcing nets are annealed nets from a thermosetting polymer. |
Semiconductor photoelectric generator (versions) / 2494496 Semiconductor photoelectric generator with double-sided working surface is made as a matrix from switched microphoto cells with n+-p-p+(p+n-n+) diode structures, in which one or two linear dimensions of the microphoto cell are comparable with diffusion length of minor current carriers in the base area, and planes of diode structures are inclined at the angle φ, 30°<φ<150° to the working surface of the generator, along the entire area of the working surface at two sides of the generator there is a passivating film with thickness of 10-60 nm, arranged on the basis of one or two oxides of the following metals: tantalum, zinc, aluminium, molybdenum and tungsten, and above the passivating film there is a layer of a clearing coating. In the other version along the entire area of the working surface of the generator at two sides of the generator there are passivating and clearing films, made on the basis of one or two oxides of the following metals: tantalum, zinc, aluminium, molybdenum and tungsten, and also silicon nitride or carbide. |
Flexible photoelectric module / 2493633 Flexible photoelectric module consists of series-arranged bottom carrier film, bottom reinforcing layer, bottom fastening film, solar cells electrically connected to each other, top fastening film, top reinforcing layer and top carrier film. The bottom and top carrier and fastening films are made from material transparent for sunlight, and the reinforcing layers used are layers of spheroidal elements made from material transparent for sunlight and coated with a layer of an anti-adhesive material. Dimensions of the spheroidal elements are in the range of 500÷1000 mcm. |
Solar battery / 2250536 Proposed solar battery has panel with modules secured thereto by adhesive; these modules incorporate solar cells interconnected in series or in series-parallel with aid of switching buses. The latter are provided with thermomechanical expansion devices; shielding glass strip provided with flexible members of desired shape and size additionally glued to planar or curvilinear surface of frame is secured by means of adhesive to front surface of each solar cell. Inner space of flexible members is filled with sealing compound to form convex meniscus. Solar cells abut against flexible members and are fixed in position until sealing compound is fully polymerized. Switching buses with thermomechanical expansion devices, as well as shunting diodes are welded or soldered to rear contacts of solar cells in regions free from sealing compound. Thermomechanical expansion devices are disposed between rear end of solar cells and carrying surface of frame also in regions free from sealing compound. Solar battery is characterized in simplified design of switching system and in that battery mass is uniformly distributed over frame surface. |
Solar battery / 2257643 Proposed solar battery has frame that may be made of carbon-filled plastic or any other materials of definite profile and is assembled of flat panels with uniformly disposed compartments accommodating modules; the latter have switching busses interconnected in series or in series-parallel and to thermal expansion bend of solar cells. These solar cells are attached to peripheral film substrate by means of rear glass plates. Substrate is made of reinforced film and has ribbon projections for securing module to frame. Built into ribbon projections are embedded parts in the form of conducting wire sections. Modules are secured to frame by means of threads fixed to embedded members. Adjacent solar cells are connected into electric circuit over module perimeter by connecting flexible switching buses to thermal expansion bend with embedded members. |
Solar battery module / 2280296 Proposed solar battery module has photoelectric converters interconnected to form panel on transparent backing of nonmetal material and battery charge control device. Panel is secured on frame carrying rotary support on one end of its axis and rotary device with motor and extreme position locking sensor fixed in position on other end, as well as direct sun radiation sensor mounted on front end of panel, dissipated sun radiation, on rear end of panel, and storage battery. Optical axes of sensors are perpendicular to respective surfaces of panel and battery charge control device is provided, in addition, with peak load compensating device connected in parallel with battery and electrically connected to rotary device. |
Solar power plant / 2280918 Proposed solar power plant has vertical shaft with azimuth turn drive that mounts solar battery provided with automatic azimuth turn drive system on one side and system for automatic turn of power plant from west to east, on opposite side; solar battery has two parts separated by vertical partition; both parts are differentially connected to clapper relay coil in automatic turn drive system. |
Section for composite solar module / 2281584 Proposed section designed for assembling high-power (up to 150 W) composite solar module that incorporates provision for fast and reliable connection of adjacent panels with frame section (without additional finishing) is made of stiff material and has ribs symmetrically disposed relative to its vertical axis to form two opposite slots on respective sides to secure edges at adjacent panels with photoelectric converters and opposite slots to receive fastening members such as self-tapping screws. |
Solar photoelectric module and its manufacturing process / 2284075 Proposed solar module has two glass sheets tightly glued together at ends with interconnected photoelectric converters disposed in-between. Mentioned photoelectric converters are immersed in optically transparent silicone liquid which is essentially mixture of polysiloxane incorporating dimethyl- and/or diethyl-vinyl siloxane monomeric units, platinum catalyst, and cross-linking agent; in the course of module production it forms slightly cross-linked gel. Interconnected photoelectric converters and their current leads are disposed between two glass sheets glued together on three sides by means of any adhesive, whereupon assembled stack is filled with optically transparent liquid which is essentially mixture of polysiloxane incorporating dimethyl- and/or diethyl-vinyl siloxane monomeric units, platinum catalyst, and cross-linking agent and is transformed into low-module gel by heating to 50-150 °C. Proposed module is characterized in high stability at poor tightness of its interior and its filler material is noted for improved linkage with glass surface while maintaining specified level and long-time stability of optical characteristics. |
Concentrating solar-electric generator / 2285979 Proposed solar generator module has at least one cellular-structure panel 1 incorporating front face sheet, rear face sheet, and cellular lattice in-between. Front sheet mounts alternating rows of solar cells 2 and wedge-shaped reflectors 3. The latter may be of developable type, for instance made of thin film stretched on stiff frame which do not cover solar cells 2 in folded condition. One of generator-module design alternates may have additional cellular-structure lattice attached to rear face sheet. At least one of face sheets is made of polymer incorporating high-heat-conductivity threads positioned in average perpendicular to longitudinal axis of rows of solar cells 2. Module may incorporate at least two hinged cellular panels folded along hinge whose reflectors 3, for instance non-developable ones, are alternating in folded condition without contacting each other. Panel mechanical design affords maintenance of uniform sun radiation distribution among all cells of generator module at small deviations from sun rays. Reflectors may be covered with aluminum layer or better silver one applied by vacuum evaporation and incorporating additional shield. |
Method and device for converting electromagnetic radiation and method for installing oblique reflectors / 2287873 Proposed method depends on reception of direct radiation from object by solar panels in-line disposed on base and radiation re-reflected from interline pairs of flat oblique reflectors at the same time optimizing electromagnetic radiation reception conditions while object is moving; this optimization is effected when base is motionless by synchronously reducing/enhancing angle of inclination of solar panels of first like planar reflectors in each interline pair to receiving plane at the same time synchronously enhancing/reducing mentioned angles of inclination of second like planar reflectors in each interline pair. In addition, angles of inclination of like planar reflectors in each pair are enhanced/reduced by reducing/enhancing width of its first like planar reflectors at the same time enhancing/reducing width of its second like planar reflectors with total width of first and second like planar reflectors in each interline pair being retained. Device for electromagnetic radiation conversion and method for mounting oblique reflectors incorporated in this device are given in invention specification. |
Solar battery / 2293398 Proposed solar battery has flat tubular frame with regularly disposed locations accommodating modules of solar cells whose magnetic torque is close to zero; these cells can be GaAs/Ge based and have optically transparent shielding plate on face end and shielding plate on rear end. They are interconnected into series or parallel circuits by means of conducting buses. Strings are fixed on face end of frame. Shielding plates installed on rear end are made of radiation-resistant foiled material in the form of boards whose metal-plating layer incorporates current-conducting pads and tracks. Each solar cell has current leads made in the form of buses connected to current-conducting pads of boards. Conducting buses interconnecting solar cells function to connect conducting pads of boards in adjacent solar cells; the latter are installed within module in tandem and are mechanically joined together by means of longitudinal flexible members adhered to rear plates and spaced apart through distance equal to that between their parallel strings; solar cells installed in parallel circuits of module are joined together to form minimal gaps by means of flat flexible clips. Module is fixed to strings by means of thread or wire. |
Solar battery / 2297076 Proposed solar battery has frame with uniformly disposed locations and tightened net sheet in the form of orthogonally disposed strings and modules stitched to them. Modules have solar cells interconnected by means of conducting buses to form electric circuit and assembled into cell blocks. Each cell block may have two or more cells protected by means of single transparent plate attached to their rear and face sides, respectively. Solar cells are physically integrated within module by means of perforated film substrate inserted between rear plates and solar cells and attached to frame by stitching them at intersection points of their orthogonally disposed strings; the latter are spaced apart on frame through distance which is a multiple of geometric dimensions of cell blocks. |
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English. |