RussianPatents.com

Polyurethanes (C09J175/04)

C
Chemistry; metallurgy
(62991)
C09
Dyes; paints; polishes; natural resins; adhesives; compositions not otherwise provided for; applications of materials not otherwise provided for
(5010)
C09J
Adhesives; non-mechanical aspects of adhesive processes in general; adhesive processes not provided for elsewhere; use of materials as adhesives (surgical adhesives a61l0024000000; adhesives on the basis of non specified organic macromolecular compounds used as bonding agents in layered products b32b; labelling fabrics or comparable materials or articles with deformable surface using adhesives and thermo-activatable adhesives respectively b65c0005020000, b65c0005040000; preparation of glue or gelatine c09h; adhesive labels, tag tickets or similar identification of indication means g09f0003100000)
(550)
C09J175
Adhesives based on polyureas or polyurethanes; adhesives based on derivatives of such polymers
(87)
C09J175/04
Polyurethanes
(51)


Extrudable self-adhering adhesive composition and methods of obtaining thereof

Extrudable self-adhering adhesive composition and methods of obtaining thereof

Invention relates to a polymer composition with separate phases for the application as a self-adhering adhesive material and versions of methods for the said composition obtaining. The polymer composition with separate phases contains the first phase - polyurethane domains, with polyurethane being formed in the presence of butyl rubber by the interaction of isocyanate with phenolic resin; and the second phase - butyl rubber matrix. The composition contains at least 35 wt % of butyl rubber relative to the total weight of the composition and is extrudable.

Thermosetting acrylic adhesive composition (versions)

Composition comprises, wt parts: glycidylmethacrylate 52.0-59.0, polyester polyurethane of grade Desmocoll-400 29.0-37.0, diallyl isophthalate prepolymer 1.5-2.5, tret-butylperbenzoate 0.5-0.6, p-methoxyphenol 0.01-0.03, methacrylated silane 2.0-3.0, acrylic acid 1.0-3.0, dioctyl phthalate 3.0-5.0, silicon dioxide with the particle size of 10-500 nm 15.0-18.0 wt parts per 100.0 wt parts of the composition. The composition comprises, wt parts: glycidyl methacrylate 52.0-59.0, polyester polyurethane of grade Desmocoll-400 29.0-37.0, N, N'-(1,3-phenylene)bismaleimides 0.7-2.0 , tret-butylperbenzoate 0.5-0.6, p-methoxyphenol 0.01-0.03, methacrylated silane 2.0-3.0, acrylic acid, 1.0-3.0 dioctyl phthalate 0.3-5.0, silicon dioxide with the particle size of 10-500 nm 15.0-18.0 wt parts per 100.0 wt parts of the composition.

Polyurethane formulation with high green strength and gunnability

Polyurethane formulation with high green strength and gunnability

Invention relates to a moisture-curable polyurethane formulation intended for joint sealing, method for producing a curable polyurethane formulation and method of bonding materials together using the formulation is also provided. A moisture-curable polyurethane formulation capable of curing to form a reaction product comprises: a) at least one isocyanate-terminated prepolymer wherein the NCO/OH mole ratio is within the range of 5 to 20, b) optionally, additional monomeric/polymeric isocyanate, c) at least one of (i) at least one of, or ii) a urea-based thixotropic additive compound produced by the in situ reaction of the excess of free isocyanate in the isocyanate-terminated prepolymer or the additional monomeric/polymeric isocyanate with an amine in the presence of a carrier in a NCO/NH2 equivalent ratio of at least 3, d) at least one rheology modifier or filler. The reaction product comprises more than 1 wt % of urea groups. The formulation is capable of reacting the components a, optionally b, c(i) or c(ii) and d. A method of adhering a first substrate to a second substrate comprising applying the polyurethane formulation to a first substrate and contacting the polyurethane formulation-applied first substrate surface with the second substrate. A method for bonding materials together which comprises applying the polyurethane formulation to a first substrate, bringing a second substrate in contact with the formulation applied to the first substrate, and subjecting the applied formulation to moisture which will allow the formulation to cure to an irreversible solid form.

Thermally hardened acrylic glue composition

Thermally hardened acrylic glue composition

Thermally hardened acrylic glue composition contains 52.0-59.0 wt. p. of glycidylmethacrylate, 29.0-37.0 wt. p. of polyetherpolyurethane of grade Desmocoll-400, 0.5-0.6 wt. p. of diallylisophthalate prepolymer, 1.0-1.4 wt. p. N,N'-(1,3-phenylene)dimaleimide, 0.5-0.6 wt. p. tretbutylperbenzoate, 0.01-0.03 wt. p. p-methoxyphenol, 2.0-3.0 wt. p. methacrylated silane, 1.0-3.0 wt. p. of acrylic acid, 3.0-5.0 wt. p. dioctylphthalate and 15.0-18.0 wt. p. of silicon dioxide with particle size 10-500 nm per 100.0 wt. p. of composition.

Anaerobic sealing composition

Anaerobic sealing composition

Invention relates to field of anaerobic sealing compositions based on (meth)acryl monomers, applied as gasket in sealing flanges and flat joints, made of various metals and alloys, in particular applied in butt end sealing of pumps, steering units, units of thrust reverse systems and other hydrosystems of airplanes. Anaerobic sealing composition contains, wt. p.: (meth)acryl monomer 20.0-55.0, initiator 2.0-5.1, inhibitor 0.05-0.1, functional additives 4.0-20.0 and mixture, containing 93-80 wt % of product of interaction of hydroxyl-containing polybutadiene rubber SKD-GTRA, aromatic and/or aliphatic diisocyanate, hydroxyl-containing (meth)acrylate and water with their molar ratio respectively (1-5):(2-6):2:(0.001-0.1) and 7-20 wt % of product of interaction of hydroxyl-containing (meth)acrylate, water and 2,4-toluylenediisicyanate with their molar ratio 2:(0.001-0.1):1 - 80.0-45.0.

Method for application of coatings, gluing and connection of mineral surfaces

Method for application of coatings, gluing and connection of mineral surfaces

Invention relates to a method of applying coatings for gluing or connection of surfaces of mineral materials by means of synthetic resin, preferably the 2-component synthetic resin. The invention is used for the reinforcement of slopes, first of all, coastal slopes to regulate moving water flows. The method for applying coatings for gluing or connection of the surfaces of mineral materials by means of the 2-component synthetic resin is realised by the application of the said synthetic resin on a surface or by connection of the surfaces of mineral materials by means of the synthetic resin and solidification of the said synthetic resin, containing from 0.01 to 10 wt % of one or several hydroxy- or alcoxyaminosilane compounds of general formula

Continuous method of producing moisture-curable polyurethane sealants and adhesives

Continuous method of producing moisture-curable polyurethane sealants and adhesives

Invention relates to a method for continuous production of moisture-curable polyurethane products used as sealants and adhesives. The method includes feeding polyol into the primary reaction zone of a double-screw extruder. Further, isocyanate is separately fed into the primary reaction zone of the double-screw extruder downstream of the polyol such that the molar ratio of NCO/OH of the isocyanate to the polyol ranges from 1.5 to 3.0. A catalyst is then separately fed into the primary reaction zone of the double-screw extruder downstream of the polyol and the isocyanate. The polyol and isocyanate are then mixed in the primary reaction zone of the double-screw extruder to homogenise the polyol and the isocyanate and a reaction is carried out to form polyurethane and a polyurethane product. A constant filling level of the double-screw extruder is maintained using a flow control device lying downstream of the double-screw extruder.

Prepolymer of diisocyanates and formamide-terminated oligomers, method for production thereof and use thereof

Prepolymer of diisocyanates and formamide-terminated oligomers, method for production thereof and use thereof

Invention relates to novel prepolymers which are obtained from diisocyanates and formamide-terminated oligomers, as well as to use of said prepolymers. The prepolymers have the following general formula X-[-N(CHO)-CO-NH-R1-NCO]n (I), in which R1 denotes an arylalkyl residue having 6-13 carbon atoms, or an alkylene residue having 4-13 carbon atoms, n equals an integer from 2 to 4, X denotes an n-valent organic residue, preferably a residue of formula Y-[-(CH2-CHR3-(CH2)p-O)m-CH2-CHR4-(CH2)o-]n- (II), in which Y denotes an n-functional, saturated residue having 2-6 carbon atoms, n assumes the value given above, R3 denotes hydrogen or methyl, R4 denotes hydrogen or methyl, m equals an integer from 2 to 30, o equals 0 or 1, p equals 0, 1 or 2. The obtained prepolymers are used to produce adhesives, lacquer, polyurethane moulded articles, polyurethane foam and sealants.

Photolatent catalysts based on organometallic compounds

Photolatent catalysts based on organometallic compounds

Invention relates to organometallic latent catalytic compounds which are suitable as catalysts in polyaddition or polycondensation reactions which are catalysed by a Lewis acid type catalyst, particularly for cross-linking a blocked or non-blocked isocyanate or an isothiocyanate component with a polyol or a polythiol to form polyurethane. Polyaddition or polycondensation reactions are initiated by that a catalyst is released while holding in electromagnetic radiation in wavelength range of 200-800 nm. The latent catalytic compound has formula I or II, Me(FG)(m-x)Ax (I); Ax(FG)(m-1-x)Me-O-Me(FG)(m-1-x)Ax (II), where Me is Sn, Bi, Al, Zr or Ti; m is an integer from 1 to the coordination number of Me; x is an integer from 0 to (m-1); A is a C1-C20 alkyl, halogen, C7-C30 aralkyl, C1-C20 alkoxy group, C2-C10 alkanoyloxy group, C6-C18 aryl or C6-C18 aryl, which is substituted with one or more C1-C20 alkyls; and under the condition that if x is greater than 1, A are identical or different; and FG independently represents a group of formula (Z), (B), (C), (D), (E), (F), (G), (L) or (M)

Aldimines and aldimine-containing compositions

Aldimines and aldimine-containing compositions

In formula :

Asymmetric dialdimine-containing polyurethane composition

Asymmetric dialdimine-containing polyurethane composition

Present invention relates to a curable composition consisting of two components K1 and K2, which contain (a) at least one aromatic polyisocyanate P, which contains isocyanate groups, (b) at least one dialdimine A of formula , where X is a diamine residue DA with two primary amino groups after separating said two amino groups; and Y1 and Y2 are independently a univalent hydrocarbon residue with 1-12 C atoms; and Y3 is a univalent hydrocarbon residue which optionally has at least one heteroatom, particularly oxygen in form of an ether, a carbonyl or ester group, and (c) compounds which are reactive with respect to isocyanate groups, particularly water and/or polyols and/or polyamines, under the condition that at least one of the two primary amino groups of diamine DA is an aliphatic amino group, and that two primary amino groups of diamine DA differ from each other either by the number of hydrogen atoms at the carbon atoms (Cα), which are in the α-position to the corresponding amino group, at least one, or the number hydrogen atoms at the carbon atoms (Cβ), which are in the β-to the corresponding amino group, at least two. Described also is a curable composition obtained after reacting said composition with water, use of the disclosed compositions as an adhesive, a sealant, filling compound or coating, methods of gluing, sealing and coating using said curable composition, and an article which is glued, sealed or coated using said methods.

Method of fabricating resilient packing laminate

Method of fabricating resilient packing laminate

Invention relates to food packing materials, particularly, to production of packing flexible laminate. At least, one plastic film and, at least, other plastic film, metal foil or paper are coated with adhesive to make laminate layers and bonded together to make said laminate. Then, laminate is continuously irradiated at the line with microwave radiation station for hardening the adhesive.

Adhesive composition and method of attaching article to substrate

Adhesive composition and method of attaching article to substrate

Invention relates to an adhesive composition for mutual attachment of two objects and a method of attaching an article to a substrate and can be used to attach articles to building walls and similar bases. The adhesive composition is double-packed in form of mounting set. The adhesive composition consists of a mixture of an aerobic adhesive substance and a hydrophilic material. The set has two containers for separate storage of the aerobic adhesive substance and the hydrophilic material. The adhesive aerobic substance is silane MS polymers. The method of attaching an object to a base using the adhesive composition involves mixing the aerobic adhesive substance with the hydrophilic substance, attaching the object by pressing a layer of the adhesive composition to the base and hardening the adhesive composition.

Moisture-cured hot-melt adhesives having at least one silane group-containing polyurethane prepolymer

Moisture-cured hot-melt adhesives having at least one silane group-containing polyurethane prepolymer

Invention relates to moisture-cured hot-melt adhesives. Disclosed is a moisture-cured hot-melt adhesive composition containing at least one silane group-containing polyurethane prepolymer of formula (I), where R1 is an n-valent organic radical of prepolymer P, which is obtained from at least one polyol and at least one polyisocyanate and has at least n isocyanate groups, followed by removal of the n isocyanate groups; R2 is a C1-C10 alkyl group; R3 is a linear or branched C1-C10 alkylene group; X is a hydrolysable radical OR4, wherein R4 is a C1-C10 alkyl group which can contain 1 or 2 oxygen atoms of an ether; a equals 0, 1 or 2; n equals 2 or more; where the prepolymer of formula (I) is obtained from reaction of the polyurethane prepolymer P with a mercaptosilane of formula (II), wherein the prepolymer P is solid at room temperature and does not have an additional silane group, and the composition has longer storage life (viscosity stability) in uncured form. Disclosed also is a method for adhesive binding of substrates using the disclosed adhesive composition and an article obtained using the adhesive.

Dispersion adhesives i

Present invention relates to an aqueous polyurethane-polyurethane-urea dispersion which is used as a starting adhesive material in dispersion adhesives, as well as a method of producing such a dispersion, use thereof, adhesive compositions containing said dispersion and adhesive composite materials. The aqueous polyurethane-polyurethane-urea dispersion is composed of: A) one or more di- or higher functional polyols, having average molecular weight of 400-5000 Da, B) optionally one or more di- or higher functional polyol components, having molecular weight of 62-399 Da, C) one or more di- or higher polyisocyanate components, and D) a mixture (D) of primary and/or secondary monoamine compounds D1) and primary and/or secondary diamine compounds D2), wherein at least one of the components (D1) and/or (D2) contains sulphonate groups, wherein the average amine functionality of the mixture (D) is 1.65-1.95, and the equivalent ratio of NCO groups in the NCO prepolymer and total number of amine and hydroxyl groups of the mixture (D) which react with the isocyanate is equal to 1.04-1.9.

Dispersion adhesives ii

Dispersion adhesives ii

Present invention relates to an aqueous polyurethane-polyurethane-urea dispersion which is used as a starting adhesive material in dispersion adhesives, as well as a method of producing such a dispersion, use thereof, adhesive compositions containing said dispersion and adhesive composite materials. The aqueous polyurethane-polyurethane-urea dispersion is composed of: A) one or more di- or higher functional polyols, having average molecular weight of 400-5000 Da, B) optionally one or more di- or higher functional polyol components, having molecular weight of 62-399 Da, C) one or more compounds which are monofunctional when reacting with a polyisocyanate and which have ethylene oxide content of at least 50 wt % and molecular weight of at least 400 Da, D) one or more di- or higher polyisocyanate components, and E) a mixture (E) of primary and/or secondary monoamine compounds E1) and primary and/or secondary diamine compounds E2), wherein at least one of the components (E1) and/or (E2) contains sulphonate groups, wherein the average amine functionality of the mixture (E) is 1.65-1.98, and the equivalent ratio of NCO groups in the NCO prepolymer and the total number of amine and hydroxyl groups of the mixture (E) which react with the isocyanate is equal to 1.04-1.9.

Adhesive compositions, reaction systems and methods of producing lignocellulose composites

Adhesive composition contains a polyfunctional isocyanate, polyether polyol and a catalyst. The catalyst consists of at least one organic compound of iron and at least one chelating ligand. The multicomponent adhesive composition is prepared in form of at least two inter-reacting chemical components. One of the at least two inter-reacting chemical components contains a polyfunctional isocyanate and a catalyst, and the other contains polyether polyol. The multicomponent adhesive composition is used to produce articles from bound lignocellulose composite based on a lignocellulose substrate, especially for making oriented fibre panels.

Hydrophilic biodegradable adhesives

Hydrophilic biodegradable adhesives

Moisture-curable and biodegradable adhesive which contains a reaction product of: (a) an isocyanate component having an average functionality of at least 2, the isocyanate component being selected from a group consisting of lysine diisocyanate and derivatives thereof, lysine triisocyanate and derivatives thereof, and combinations thereof; (b) an active hydrogen component having an average functionality greater than 2.1, the active hydrogen component containing a component with a hydroxyl functional group; and (c) an ionic salt component having an average hydroxyl or amino functionality, or combination thereof, of at least 1, selected from a group consisting of ammonium salts, halides, sulphonates, phosphonates, carboxylates and combinations thereof.

Adhesive polyurethane composition

Adhesive polyurethane composition consists of a prime coat and polyurethane adhesive, comprising urethane rubber and ethyl acetate, applied on its surface. The prime coat consists of a solution of polyurethane thermoplastic elastomer with ethyl acetate in ratio: polyurethane thermoplastic elastomer 10-18 wt % and ethyl acetate - the balance. The polyurethane adhesive contains a solution of polyurethane thermoplastic elastomer and a mixture of polar organic solvents consisting of ethyl acetate and methylene chloride, with the following ratio of components: polyurethane thermoplastic elastomer 17-27 wt %; methylene chloride 7-10 wt % and ethyl acetate - the balance. The polyurethane adhesive can contain perchlorovinyl resin as a target additive in amount of 0-10% to the total weight of the adhesive.

Fixing composition for primer charges of antitank grenades

Composition contains the following in pts.wt: 100 bifunctional prepolymer with terminal isocyanate groups, 10.6-12.8 - 3,3'-dichloro-4,4'-diaminodiphenylmethane, 15.9-19.2 dioctylsebacate, 1.2-1.4 - 1,4-butanediol, 0.31-0.35 - para-phenylenediamine and 0.015-0.030 - Agidol 51,52,53 (mixture of 2-dimethylaminomethylphenol, 4-dimethylaminophenol, 2,6-bis (dimethylaminomethyl)phenol, 2,4-bis-(dimethylaminomethyl)phenol,2,4,6-tris-dimethylaminomethyl)phenol.

Method for light aeroplane covering

Method for light aeroplane covering

Invention relates to method for covering light airplanes with polyester sheathing fabric, as well as to dispersive hot-gluing glue and its application for covering. For covering, polyester sheathing fabric with longitudinal shrinkage of 7% and transversal shrinkage of 5% at 160-180°C is used. In the process of covering light airplanes and/or their parts consisting of frame system, sheathing fabric in the area of its overhangs and frame parts is covered by dispersive hot-gluing glue and wrapped around longeron part of frame so that when connection between sheathing fabric and frame produced by glue is destructed the fabric could be held on frame carcass. Dispersive hot-gluing glue contains 80-88% of adhesive, 12-15% of hardener and 0.15-0.3% thickener, and the glue is polymerised at temperatures >40°C. The hardener contains 54-60% of solvent, 0.35-0.5% of naphthalensulfonic acid sodium salt-based stabiliser, 0.25-0.35% of propoxylated spirit-based emulsifier, 1.7-1.9% of polyetheramines-based hardener, 37-41% of polyisocyanate.

Aldimines having hydroxy groups and aldimine-containing compositions

Aldimines having hydroxy groups and aldimine-containing compositions

Invention relates to aldimines of formula (I)

Polyisocyanurate based adhesive

Present invention relates to a polyisocyanurate based adhesive which is obtained by reacting an organic polyisocyanate with a compound containing hydrogen atoms which are reactive towards isocyanate, in the presence of a trimerisation catalyst. The organic polyisocyanate is a polymer or prepolymer polyisocyanate, and content of the soft block in the adhesive ranges from 40 to 60 wt %. A reaction mixture for producing said adhesive is also described.

Gluing method

Gluing method

Method involves applying a UV curable adhesive resin composition, containing a photolatent base, onto at least one transparent surface of at least one of a first and a second substrate. The substrates are then brought together so that said adhesive composition lies in between. The adhesive composition is then exposed to actinic radiation for curing. The UV curable adhesive is a OH/NCO system or SH/NCO system. In another version of the gluing method, the first and second substrates are brought together after exposing the adhesive composition in between to actinic radiation.

Composition for producing sealant for binding unprimed surface with glass and plastic

Composition for producing sealant for binding unprimed surface with glass and plastic

Composition contains one or more urethane prepolymers, having isocyanate residues, one or more compounds which catalyse the reaction of isocyanate residues with water or a compound which contains active hydrogen and one or more alpha-hydrocarbyl silane compounds. The urethane propolymer additionally contains a silane functional group. The composition additionally contains a compound or a polymer, containing silane residues. The composition additionally contains one or more compounds which catalyse silanol condensation. The composition is deposited onto the surface of glass or plastic with a coating or onto the surface of a substrate to obtain a sealant, then brought into contact and the composition is then hardened. The composition is placed between the glass or plastic with coating and the substrate. The sealing composition is used for binding an unprimed surface with a coating, such as a window lintel with glass with a transparent plastic, coated with an abrasive-resistant coating or with glass or plastic with a coating, additionally coated with glass cement, such as ceramic or organic glass cement.

Method of producing dispersions of blocked polyurethane prepolymers, use thereof to obtain coating agents, adhesive substances and sealants and elastomers obtained using said dispersions, as well as substrates having coatings obtained using said dispersions

Invention relates to a method of producing dispersions of blocked polyurethane prepolymers, use of dispersions obtained using said method to produce coating agents, adhesive substances and sealants and elastomers, said application products themselves, as well as substrates provided with coating agents. The method involves the following: I) a blocked polyurethane prepolymer is obtained first by reacting a) 100 equivalent % of at least one polyisocyanate with b) 50-90 equivalent %, in terms of isocyanate reactive groups, of a thermally split blocking agent, c) 5-45 equivalent %, in terms of isocyanate reactive groups, monohydroxycarboxylic acid as a hydrophilic agent and d) 0-25 equivalent %, in terms of isocyanate reactive groups, of polyhydroxycarboxylic acid as a hydrophilic agent and e) 0-15 equivalent %, in terms of isocyanate reactive groups, of at least one, in terms of isocyanate reactive groups, di- or polyfunctional component of a chain extender with molecular weight from 32 to 350 g/mol, where i) this takes place using (partially) water-miscible organic solvents which are inert to NCO-groups and have boiling point lower than 120°C (at 1013 mbar), ii) and they are used in such an amount that the polyurethane prepolymer contained in the reaction solution after complete conversion ranges from 70 to 98 wt %. Further, II) the polyurethane prepolymer solution obtained at step (I) is dispersed in water, where before, during or after dispersion, deprotonation of carboxylic acid groups with a base takes place at least partially, and then III) if needed, the contained organic solvent is completely removed during dispersion via distillation.

Adhesive composition

Adhesive composition contains perchlorovinyl resin and an organic solvent. The composition contains dichloroethane as an organic solvent, as well as dibutyl phthalate and a modifier in form of epoxy diane resin ED-20 and N-nitrosodiphenylamine, with the following ratio of components in pts.wt: perchlorovinyl resin 20, organic solvent 80.0, dibutyl phthalate 1.0, epoxy diane resin ED-20 10.0-15.0, N-nitrosodiphenylamine 0.33-1.11.

Adhesive composition

Adhesive composition contains polychloroprene rubber nairit DP, butyl phenol formaldehyde resin 101 K, water, zinc oxide, magnesium oxide and an organic solvent which is a mixture of ethyl acetate and nefras. The composition additionally contains a modifier obtained first as a result of room temperature-reaction of an aliphatic amine - triethanolamine or polyethylene polyamine and silica filler Rosil R-175, with the following ratio of components, wt %: polychloroprene rubber nairit DP - 90.0, butyl phenol formaldehyde resin 101K - 90.0, water - 3.0, zinc oxide - 5.0, magnesium oxide - 11.0, organic solvent - 800.0, aliphatic amine - 0.1-0.2, silica filler Rosil R-175 - 10.0.

Composition distinguished by improved adhesion to porous substrates

Composition distinguished by improved adhesion to porous substrates

Invention relates to compositions based on silane-functional polymers, which are suitable for adhesive binding, sealing and coating porous substrates. The composition contains at least one silane-functional polymer, at least one organosilane and at least one organotitanate. The silane-functional polymer is a silane-functional polyurethane polymer or can be obtained through hydrosilylation of polymers, having terminal double bonds. The organosilane contains at least one sulphur atom. The organotitanate has ligands bound to a titanium atom through an oxygen-titanium bond. The ligands are selected from a group consisting of an alkoxy group, a sulphate group, a carboxylate group, a dialkylphosphate group and an acetylacetonate group. Content of the organotitanate in the composition is between 0.1 and 10 wt %. Content of the organosilane in the composition is between 0.1 and 7 wt %. The composition also contains at least one filler, content of which is between 10 and 70 wt %. The composition is used for binding, sealing and coating substrates made from concrete, mortar, brick, tiles, plaster, natural stone such as granite or marble, glass, glass-ceramic, metal or metal alloy, wood, plastic and lacquer.

Single-component moisture-curable polymer foamed material

Single-component moisture-curable polymer foamed material

Foamed material consists of a single-component, moisture-curable composition containing at least one polymer P, having isocyanate groups and/or alkoxy silane groups, 10-60 vol. % of at least one gas and 10-30 wt % soot per total weight of the single-component foamed material which is curable in a moist medium. Application of the obtained foamed material is carried out primarily at temperature in the range of 10-40°C. The degree of foaming of the composition and, consequently, gas content of the single-component, moisture-curable foamed material varies during its application.

Single-component glass primer containing oxazolidine

Single-component glass primer containing oxazolidine

Present invention relates to a single-component primer composition for substrates made from glass and/or plastic, having setting time of at least 1 month. Said composition includes: a base primer composition including (a) an isocyanate functional prepolymer derived from the reaction of an aliphatic polyisocyanate and a polyol, and which is partially reacted with an amino group of a secondary aminosilane, wherein the aminosilane includes two or three methoxy groups bound to a silicon atom, two or three ethoxy groups bound to a silicon atom, or a combination thereof; (b) an isocyanate functional prepolymer with an isocyanate content greater than 1%, which is the reaction product of an aromatic polyisocyanate and a polyol of Mn>300; and (c) at least one solvent for the components (a) and (b); and an ingredient including an oxazolidine ring or derivative thereof; a second adduct (i) of an aromatic polyisocyanate and (ii) mercaptosilane, aminosilane or both; a film-forming polymer. The invention also describes glued structure having a glass or plastic panel, containing the said composition, a method of gluing the glass panel to the frame of a vehicle, comprising a step for applying said composition and a glued structure made using said method.

Aqueous polyurethane dispersion which does not contain n-methylpyrrolidone and solvents, preparation method thereof and use

Disclosed is an aqueous polyurethane dispersion which does not contain N-methylpyrrolidone and solvents and contains a product of reaction of a mixture of 1-isocyanate-3,3,5-trimethyl-5-isocyanatemethylcyclohexane and 4,4'-diisocyanatedicyclohexylmethane, one or more polyols with average molecular weight of 500-3000, one or more compounds with at least one OH- or NH- functional group, which contain a carboxyl and/or carboxylate group, where at least 50 mol % acid incorporated in the overall resin consists of dimethylol propionic acid, one or more polyols and/or polyamines with average molecular weight less than 500 and, if necessary, one or more monoalcohols and/or monoamines, as well as preparation method thereof and use thereof as an agent for coatings having good resistance characteristics.

Moisture-curable polyurethane compositions containing aldimine-containing compounds

Moisture-curable polyurethane compositions containing aldimine-containing compounds

Invention relates to a moisture-curable composition for adhesive compounds, sealing compounds, coatings or linings, application thereof as an adhesive, sealing compound or coating, a cured composition obtained by reacting water with such a composition, methods of gluing bases and sealing using said composition, as well as adhesive and sealed articles made using said methods, respectively. The moisture-curable composition contains (i) at least one isocyanate-containing polyurethane polymer P, which is obtained from at least one polyisocyanate and at least one polyol, and (ii) at least one aldimine-containing compound of formula (I): .

Reactive polyurethane hot-melt adhesives with low content of monomeric isocyanates

Reactive polyurethane hot-melt adhesives with low content of monomeric isocyanates

Invention relates to a moisture-hardening composition for polyurethane hot-melt adhesives, use thereof as hot-melt adhesive, to a hardened composition obtained from reaction of moisture with said composition, a method of gluing bases using said composition and an adhesive article made using said method, as well as a method of reducing content of monomeric diisocyanates in polyurethane polymers. The moisture hardening composition contains (a) at least one polyurethane polymer of formula (I) which is solid at room temperature, containing aldimine groups; (I) and (b) at least one polyurethane polymer P containing isocyanate groups.

Aqueous single-component dispersion undercoating for gluing polymeric films with dispersion adhesives

Aqueous single-component dispersion undercoating for gluing polymeric films with dispersion adhesives

Aqueous polyurethane dispersion composition contains polyurethane with carbodiimide and/or carboxyl groups, and polyurethane dispersion adhesive which contains polyurethane with carbodiimide and/or carboxyl groups. The polyurethanes are polyester-polyurethane elastomers. The aqueous polyurethane dispersion composition and polyurethane dispersion adhesive also contain at least one carbodiimide which contains at least one carbodiimide group. The aqueous polyurethane dispersion composition and polyurethane dispersion adhesive react with each other through a polyaddition reaction when heated to 50°C or higher. A polymeric film having an undercoating is obtained by depositing and drying the single-component aqueous polyurethane dispersion composition on a polymeric film. A composite is obtained by reacting the polymeric film having an undercoating with a substrate on which polyurethane dispersion adhesive is deposited and dried. The composite can be produced industrially and can be especially used in interior finishing, preferably of a component built into a transportation vehicle or can be used in the furniture industry.

Strengthening polyurethane composition

Composition contains the following components, wt %: 74.42-83.63 - hydroxyl-containing polybutadiene rubber SKD-GTRA, 1.63-2.11 - 1.4-butanediol, 0.07-0.09 - trimethylolpropane, 4.76-13.04 - transformer oil, 8.90-11.53 - hexamethylenediisocyanate, 0.5-5.0 - technical carbon (over 100%), 0.02-0.03 - dibutyldilaurate of tin (over 100%).

Glue layer for wig and method of its production

Glue layer for wig and method of its production

Invention relates to glue layer, to wig, where such layer is used, and also to methods of their production. Glue layer is made of polyurethane contact layer made by mixing of two fluids, the main reagent and hardener, besides the main reagent is high-molecular alcohol, and hardener contains polyisocyanate as the main component. At the same time one side of glue layer is glued to wig base by means of chemical reaction to inner side of wig base in process of reaction of gel-formation of glue solution applied on inner side of wig base, and serves for fixation of hair to stick root part of hair inserted with penetration on inner side of wig base. And other side is glued to head skin by means of pressing and performs function of possible further peeling from scalp.

Undercoating with long open time for polymer substrates

Invention relates to undercoating compositions containing at least one polyurethane prepolymer A with isocyanate groups; at least one aliphatic polyisocyanate B; at least one aromatic polyisocyanate C; at least one reaction product D, obtained from at least one epoxysilane and at least one aminosilane with quantitative ratio of atoms of active hydrogen of the amine to the number of epoxy groups of the epoxysilane equal to 3:1-1:3, or at least one epoxysilane and at least one mercaptosilane with quantitative ratio of mercapto groups to epoxy groups equal to 1.5:1-1:1.5, with content of product D equal to 0.5-15 wt % of the total weight of A+B+C+D. The invention also relates to use of the undercoating composition as an undercoating for adhesives, sealants and floor coatings.

Polyurethane adhesive composition

Invention relates to a polyurethane adhesive composition which can be used for gluing materials, concrete, leather, wood etc. The composition contains the following in pts. wt: 20-60 moulding polyurethane or wastes from production of moulding polyurethane, 80-40 ε-caprolactam, 5-50 isocyanate and 100-300 organic polar solvent.

Aqueous polyurethane dispersions and use thereof as adhesive

Aqueous polyurethane dispersions and use thereof as adhesive

Said dispersions contain ionic or potentially ionic and nonionic groups. Ionic or potentially ionic groups are entered into a polymer skeleton through a difunctional polyol component whose molecule also contains 0.5-2 moles of sulpho-acid or sulphonate groups, while nonionic groups are entered through one or more compounds which are monofunctional in polyaddition reactions of isocyanates, containing at least 50 wt % ethylene oxide and having molecular weight of at least 400 Da. The dispersions also contain 0.1-7.5 wt % emulsifying agent which is not chemically bonded with the polymer, where the said emulsifying agent is nonionic, liquid at room temperature and has hydrophilic-lipophilic balance ranging from 12 to 18.

Adhesive composition

Adhesive composition

Invention relates to a composition which is used in rocket engineering, particularly for attaching solid-propellant charge to the rocket casing. The adhesive composition contains, pts. wt: 9.0 to 14.0 urethane rubber SUREL-9, 1.0 to 2.0 hardener TON-2, 60.0 to 70.0 solvent - ethyl acetate and, additionally, 4.0 to 9.0 nongranular technical carbon and 8.0 to 12.0 dibutyl phthalate. Solid propellant contains an oxidising agent, fuel, synthetic rubber-based binder which his plasticised with nitroglycerin, curing additives and catalysts.

Water dispersions of glues

Water dispersions of glues

Water dispersion contains polyurethane dispersion and water dispersion of silicon dioxide. Polyurethane dispersion has the average size particle of polyurethane polymer in the range from 60 to 350 nm. The water dispersion of silicon dioxide has SiO2 particles diametre from 20 to 400 nm. Polymer dispersions are used as glues for gluing of any substrates same or different type.

Water-soluble melt adhesive, use thereof, method of producing multilayer material, method of producing paper, which is adhesive when wet and method of producing multilayer textile material

Invention relates to producing water-soluble melt adhesive, which can be widely used in cardboard and paper industry for gluing and laminating cardboard, as well as for making joints of not less than two layers of paper, used for making toilet paper. The water-soluble melt adhesive contains 40-70 wt.% of not less than one homopolymer or copolymer with free carboxylate groups based on monomers with unsaturated ethylene bonds (component A), 15-45 wt % of not less than one water-soluble or polyurethane dispersed in water (component B), 12-35 wt % of not less than one alkanolamine (component C) and 0-20 wt % target additives.

System for glass connection to structure

System for glass connection to structure

Invention is related to compositions used for binding of glass or plastic with the help of polyurethane adhesive. Technical task - development of composition that makes system together with polyurethane adhesive for durable connection of glass or plastic with structure. Composition is suggested, which contains a) one or several organic compounds - titanates having four ligands, where ligands represent hydrocarbyl, which may not contain one or several functional groups, having one or several heteroatoms selected from group that includes oxygen, nitrogen, phosphorous and sulfur, where two or more ligands may create cyclic structure; b) one or several mercapto silanes; c) one or several polyaminosilanes; d) one or several secondary aminosilanes and e) dissolvent that dissolves composition components. Also system is suggested for binding of glass with substrate, which includes suggested composition and adhesive comprising isocyanate functional polymer and catalyst for hardening of isocyanate functional prepolymer.

Hydropyle blocked polyisocyanates

Hydropyle blocked polyisocyanates

Hydropyle blocked polyisocyanates are produced by the method wherein: A) one or the several organic polyisocyanates interact with B) one or several organic compounds, containing, at least, one isocyanate reactive group and comprising b1) non-ionic hydropyle groups based on simple poly-alkylenoxide-polyethers containing at least 30 wt % of ethylene-oxide links, and/or b2) ionic or potentially ionic hydropyle groups a forming dissociation equilibrium depending upon pH in interaction with water, and, depending upon pH not having a charge and being charged positively or negatively, or interact with C) one or several blocking means containing, at least, one cyclic ketone with CH-acidity of the general formula (2) where X is the electron-acceptor group, R1, R2 mean independently from each other the hydrogen atom, saturated or unsaturated aliphatic residual containing up to 12 carbon atoms, n is 1, and, if necessary, interacting with one or several (cyclic)aliphatic mono- or polyamines with the amount of amino groups in a molecule of 1 to 4 and molecular weight of up to 400 note that, if necessary, it interacts with one or several multinuclear spirits with the number of hydroxyl groups in a molecule from 1 to 4 and molecular weight of up to 400, and, if necessary, with amino spirits in the presence D) of one or several catalysts or, if necessary, with auxiliary substances and additives and, if necessary E), with solvents. Polyisocyanates can be used for manufacturing varnishes, coatings, sizes, glues and molded products.

Composition for coats including compound containing alcohol-orthosilicate group

Composition for coats including compound containing alcohol-orthosilicate group

Proposed composition includes heterocyclic silicon compound containing at least one alcohol-orthosilicate group and cross-linking agent interacting with hydroxylic groups. Proposed composition has low content of volatile organic solvents and is hardened at temperature of 5°C ; hardened composition contains no unreacted low-molecular blocking agents which are likely to evolve into surrounding atmosphere at hardening or during operation. Besides that, ratio of life to time to drying time is favorable. Proposed composition may be used for finishing and secondary finishing of automobiles and large transport facilities; it may be also used as an adhesive.

Organoborane-amino complex polymerization initiators and polymerizable compositions

Organoborane-amino complex polymerization initiators and polymerizable compositions

Invention relates to two-component composition used to initiate curing of one or more polymerizable monomers that are cured when affected by free radicals, which composition consists of organoborane-amino complex and an isocyanate capable of destroying organoborane-amino complex, wherein equivalent ratio of amine nitrogen atoms to boron atoms ranges from more than 4.0:1 to 20.0:1. In another embodiment of invention, subject of invention is two-component composition for use as sealing materials, coatings, primers for modifying polymer surfaces, and as molded resins, which composition consists of component 1: organoborane-amino complex wherein ratio of amine nitrogen atoms to boron atoms ranges from more than 4.0:1 to 20.0:1; component 2: one or more monomers, oligomers, or polymers having olefinic instauration, which are able of being subjected to free-radical polymerization; and effective amount of an isocyanate, which can initiate dissociation of complex to free borane for initiation of polymerization of one or more monomers, oligomers, or polymers having olefinic instauration, provided that complex dissociation initiator is stored separately from complex until initiation of polymerization becomes desirable. Such compositions are handling safe, i.e. they are not self-inflammable, stable at or near ambient temperature and so they do not initiate polymerization at or near ambient temperature in absence of complex dissociation initiator. Polymerized composition show good cohesion and adhesion strength. Described are polymerizable composition polymerization process, method of gluing two or more substrates using polymerizable composition; method of modifying polymer surface having low surface energy using polymerizable composition, as well as coating and laminate containing polymerizable composition.

Hardening composition

Invention relates to a hardening composition used in building industry. The composition comprising a polymer with two or more thiol groups per a molecule, compound with two or more isocyanate groups per a molecule, carbon black and calcium carbonate involves additionally a filling agent wherein silicic acid or silicate is the main component or organic filling agent wherein ground powdered carbon as the main component. The composition shows satisfactory stability in storing the basic compound and the hardening capacity even after storing the basic compound and, except for, it forms the hardened join with sufficient rupture strength limit, hardness and properties of barrier for gas. The composition comprises a hydrocarbon plasticizer and an organometallic compound preferably that provides highly effective hardening properties in combination with higher mechanical strength and properties of barrier for gas. Proposed hardening composition can be used as sealing material in manufacturing isolating glasses, frames, windows for transportation means, glues and covers.

Polyurethane composition

Invention relates to polymer compositions including at least one polyurethane prepolymer A with isocyanate terminal groups obtained from at least one polyisocyanate with at least one polyol A1 and, if necessary, with at least one polyol A2. wherein A1 is linear polyoxyalkylenepolyol with unsaturation degree ,less than 0.04 m-equ/g; A2 is polyol, which is present in amount 0-30%, preferably 0-20%, in particular 0-10% based on total amount A1+A2; and at least one polyaldimine B. Composition is a mixture of polyurethane prepolymer A with polyaldimine B. In absence of moisture, such compositions are stable on storage. When being applied, such compositions are brought into contact with moisture, after which polyaldimines are hydrolyzed into aldehydes and polyamines, and polyamines react with polyurethane prepolymer containing isocyanate groups. Products obtained from such composition possess very wide spectrum of properties, including tensile strength varying within a range from 1 to 20 MPa and ultimate elongation above 1000%. Composition may be used as glue, hermetic, coating, or facing.

Adhesion enhancer for monomer-free reactive polyurethanes

Invention relates to compositions based on polyols and high-molecular weight diisocyanates with low monomer content as well as to a method for preparation of indicated compositions as binders for reactive glues. In particular, invention provides reactive polyurethane composition based on polyols and high-molecular weight diisocyanates prepared by reaction of diols having average number molecular weight mot higher than 2000 with monomeric diisocyanates having molecular weight not higher than 500. Thus obtained high-molecular weight diisocyanates have maximum monomer content 10%. Invention also describes a method for preparation of indicated composition. Thus obtained compositions are used as glues/hermetics imparting improved adhesion characteristics and having significantly reduced contents of health-detrimental monomeric diisocyanates having molecular weight below 500. For instance, resistance to detachment of film attached to surface using claimed glue is 4.3 N/mm, heat resistance lies at a level of 148°C, and frost resistance below -30°C.

Another patent 2551025.

© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.