RussianPatents.com

Method of treating bottom zone of injecting wells. RU patent 2244113.

Method of treating bottom zone of injecting wells. RU patent 2244113.

FIELD: oil and gas production.

SUBSTANCE: groups of high intake- and low intake-capacity injecting wells are chosen in a single hydrodynamic system and, for each well, oil reservoir properties and permissible degree of pollution of fluid received by high intake-capacity wells are determined. When fluid from low-permeable oil reservoir flows off through high intake-capacity wells, this fluid is cleaned to permissible degree of pollution.

EFFECT: reduced losses in intake capacity of formations and increased time between treatments of wells.

1 dwg

 


 

IPC classes for russian patent Method of treating bottom zone of injecting wells. RU patent 2244113. (RU 2244113):

E21B43/25 - Methods for stimulating production (dump bailers E21B0027020000; vibration generating arrangements E21B0028000000; chemical compositions therefor C09K0008600000)
E21B43/20 - Displacing by water
Another patents in same IPC classes:
Device for treating well walls within range of productive bed Device for treating well walls within range of productive bed / 2244112
Device has pipe-like body with detachable upper and lower sleeves. Concentrically to body, with possible rotation relatively to it, a cover is mounted with blades with scrapers placed spirally on its surface. To lower sleeve a reactive end piece is connected with slit apertures. End piece hollow is filled with granulated material engaging in exothermal reaction with acid. Lower portion of end piece is provided with check valve. Upper sleeve is provided with check valve having locking element in form of sphere with shelf and centering elements, to be dropped from well mouth. Base of saddle of check valve is made in form of disc having diameter equal to diameter of body. Pass aperture of saddle in lower portion is overlapped with easily destructible and easily removed element. Length of sphere shelf is greater than height of pass aperture of saddle of check valve of upper sleeve.
Method of treating bottom zone of injecting wells Method of treating bottom zone of injecting wells / 2244113
Groups of high intake- and low intake-capacity injecting wells are chosen in a single hydrodynamic system and, for each well, oil reservoir properties and permissible degree of pollution of fluid received by high intake-capacity wells are determined. When fluid from low-permeable oil reservoir flows off through high intake-capacity wells, this fluid is cleaned to permissible degree of pollution.
Oil deposit extraction method Oil deposit extraction method / 2247230
Method includes construction of wells and oil and gas collection system, forcing water from water-bearing level into oil deposits, flow of oil from oil deposits into secondary deposit and following extraction of oil from secondary deposit for useful implementation. Resources of deposit are separated on basis of natural energy characteristic on screened and having rigid water-forcing mode. Deposit is operated by three well types. Of the latter flow wells connect oil deposits to secondary deposit for flowing and collection of oil in upper bed under effect from gravitation. Balancing wells connect screened deposits and secondary deposit to water-forcing level for balancing of bed pressures and preventing loss of rocks stability. Extraction wells connect secondary deposit to oil and gas collection system. Selection of bed for secondary deposit is performed from number of highly penetrable beds, having maximally allowed excess over oil deposits.
Method for extraction of oil deposit / 2247829
Method includes drilling of deposit according to row-wise non-even grid of wells with distance from force to extractive rows, greater than distance between extractive rows, pumping of displacing gent into force wells, extraction of product from product wells and transferring of displacing agent pumping front to extraction area. According to invention, transferring of displacing agent pumping front to extraction area is performed by drilling side horizontal shafts in all wells of force row and directed towards extractive row by beds ad zones with most remainder oil saturation level. Then among these wells are singled out, horizontal shafts of which pass along beds and areas with lesser oil saturation level. Pumping of displacing agent is restarted, and other wells are transferred to product category. These wells are operated with face pressures lower than saturation pressure until reaching 98% water saturation level. After that pumping of displacing agent is restarted along all other wells of force row. During that, rows of extractive wells are operated in normal mode.
Oil deposit extraction method (variants) Oil deposit extraction method (variants) / 2254457
According to first variant of method, force and product wells are drilled, working agent is fed through force wells, oil is extracted through product wells, dome-like raised portions are marked out, which surpass absolute marks of bed, additional wells are positioned in these portions. Wells placement is planned at tops of dome-like raised portions even with breach of evenness of planned well mesh. After full drilling of wells mesh and in case of more accurate definition according to data of drilled wells of deposit of dome-like portions side shafts are drilled from adjacent wells towards more precisely defined tops of dome-like portions, controlling the deposit. In adjacent wells and side shafts, positioned on tops of dome-like raised portions , range of productive bed is opened between absolute mark of ceiling in this well and absolute mark, appropriate for ceiling in closest well. According to second variant of method practically analogical operations are realized as in first variant, except when absolute mark of ceiling of productive bed according to adjacent wells is lower than mark of sole of productive bed, whole bed is opened in side shafts.
Water-flooded reservoir development method (variants) Water-flooded reservoir development method (variants) / 2259473
Method involves withdrawing oil through production wells and ejecting working substance through ejection wells. To prevent water ingress from well bore into oil-saturated formation area formation is perforated in water-oil interface zone so that lower part of oil-saturation formation interval and upper part of water-flooded formation interval are penetrated. This provides oil relative permeability retention in oil-saturated formation area. To prevent formation mudding during initial perforation thereof drilling is performed in depression, balance and repression modes with pressure of not more than 3 MPa. As far as oil is depleted perforation interval is extended towards oil-saturated formation area.
Nonuniform oil field development method Nonuniform oil field development method / 2259474
Method involves drilling injection and production wells; flooding oil reservoir and extracting oil out of well; defining more exactly geologic aspects on the base of drilling results; designing and drilling additional wells with horizontal bores or drilling horizontal bores from existent wells; determining location of reservoir drive zone boundaries; calculating volume of dead oil located near drive zones; drilling horizontal bores from existent wells located near drive zones and/or new wells with horizontal bores located in above zone, wherein horizontal bores are drilled in direction perpendicular to drive zone boundaries.
Method for extraction of oil deposit Method for extraction of oil deposit / 2260686
Method includes drilling vertical product and force wells, extracting oil from product wells, forcing working agent through force wells, making side horizontal shafts in force wells, forcing working agent through side horizontal shafts of force wells. Additionally, side horizontal shafts are made in extraction wells. Oil is taken through side horizontal shafts of extractive wells. With pressure in the well, decreased for 5-10% from hydrostatic pressure, all side horizontal shafts are made by washing away rock under pressure of fluid of around 15-20 mPa. Direction of all side horizontal shafts is set to be parallel to rows of wells.
Method for oil reservoir development in carbonate or terrigenous formation with developed macrocracks Method for oil reservoir development in carbonate or terrigenous formation with developed macrocracks / 2264533
Method involves drilling production and injection wells and maintaining formation pressure; performing seismic works to determine volumetric routing of natural macrocrack system with lateral and depth routing; forming production and injection macrocracks of above system; drilling wells to corresponding macrocracks and forming producing well-macrocrack systems for oil production and injection well-macrocrack for formation flooding or production well-macrocrack for oil production and system including vertical and/or horizontal multibranch wells for formation flooding or injection well-macrocrack system for formation flooding and system including vertical and/or horizontal multibranch production wells for oil production or production well-macrocrack system, injection well-macrocrack system and system including vertical and/or horizontal multibranch production and injection wells.
Oil-bearing bed development method and equipment for group pumping station with oil deposit zone Oil-bearing bed development method and equipment for group pumping station with oil deposit zone / 2265120
Method involves pumping working agent, namely water, in two stages. The first stage is performed with the use of power pumps. The second one is carried out by means of hydraulic measuring pumps, which are used to convert injection pressure created by power pumps. If it is necessary to increase pressure in water lines used to deliver water to separate injection wells pressure is regulated in accordance with necessary water volume to be injected in wells on the base of collecting properties of oil formations in bottomhole formation zones. This is performed by providing change in pump piston diameter and stroke ratios in the first and the second sections of hydraulic measuring pumps, which are selected on the base of hydraulic resistance variation depending on water flow velocity. Parameters characterizing injection system operation are simultaneously measured and efficiency of the method and equipment operation is detected from above characteristics.
Injection well operation optimization method Injection well operation optimization method / 2265716
Method involves flooding production bed through injection wells with the use of pump units. In the case of terrigenous porous productive bed flooding acoustical sound resonators with resonance frequency setting are installed in injection line. This eliminates amplitude of alternating low-frequency liquid pulsation sound generated by pump units. Method also involves providing constant compression mode in productive beds and frontal oil drive from productive bed.
Device for treating well walls within range of productive bed Device for treating well walls within range of productive bed / 2244112
Device has pipe-like body with detachable upper and lower sleeves. Concentrically to body, with possible rotation relatively to it, a cover is mounted with blades with scrapers placed spirally on its surface. To lower sleeve a reactive end piece is connected with slit apertures. End piece hollow is filled with granulated material engaging in exothermal reaction with acid. Lower portion of end piece is provided with check valve. Upper sleeve is provided with check valve having locking element in form of sphere with shelf and centering elements, to be dropped from well mouth. Base of saddle of check valve is made in form of disc having diameter equal to diameter of body. Pass aperture of saddle in lower portion is overlapped with easily destructible and easily removed element. Length of sphere shelf is greater than height of pass aperture of saddle of check valve of upper sleeve.
Method of treating bottom zone of injecting wells Method of treating bottom zone of injecting wells / 2244113
Groups of high intake- and low intake-capacity injecting wells are chosen in a single hydrodynamic system and, for each well, oil reservoir properties and permissible degree of pollution of fluid received by high intake-capacity wells are determined. When fluid from low-permeable oil reservoir flows off through high intake-capacity wells, this fluid is cleaned to permissible degree of pollution.
Method for cleaning face-adjacent bed area Method for cleaning face-adjacent bed area / 2246610
Method includes forming of gas pillow by forcing gas into inter-tubular space. Further pushing liquid is forced therein with forcing away of liquid from inter-tubular space along tubing column into tank or store, pressure is dropped from inter-tubular space down to atmospheric and hydro-impact is used to effect well face by rotating liquid flow from tubing column. Pillow is formed by plant for forcing pushing liquid and gases. As gas, mixture of air and exhaust gases is used in relation no greater than 2:3. pillow pressure provides for prevention of gas from getting into tubing column. Volume of pushing liquid is determined from formula: Vpl=0.785.(d21-d22).(HT-Hgp-Hi-t).10-6, where d1 - inner diameter of casing column, mm; d2 - outer diameter of tubing pipes, mm; HT - depth of lowering tubing column in well, m; Hgp - height of gas pillow in inter-tubular space, m; Hgp=K·Pgp; K - hydrostatic coefficient of resistance to pushing of liquid and gas (K=100 m/MPa), m/MPa; Pgp - end pressure of gas pillow, MPa; Hi-t - inter-tubular space height.
Method and device for affecting beds, containing liquid substances Method and device for affecting beds, containing liquid substances / 2249685
Device has pump, placed on well mouth equipment, tubing string, passing downwards in casing string of well. Node of hollow cylinders is connected to lower portion of tubing string. A couple of pistons is placed inside cylinders node and connected to pump via pump bars and gland rod. For compression of liquid within cylinders node, pump is enabled. Compressed liquid is outputted into casing column, and strike wave is formed as a result. Cylinders node includes upper cylinder, lower cylinder. Transfer cylinder is placed below upper and above lower cylinders. Cylinder with compression chamber is placed between transfer cylinder and upper cylinder. Lower cylinder is made with possible placement of lower piston, and upper cylinder is made with possible placement of upper piston. Lower piston has larger diameter, than upper piston. Displacement of piston affects volume of compression chamber, decreasing it. Liquid in the chamber is compressed. During downward movement of piston liquid is lowered into well. Seismic data from wells at remote locations are gathered and processed.
Device for effecting face-adjacent zone of productive wells bed Device for effecting face-adjacent zone of productive wells bed / 2249686
Device has receiving chamber with solid-fuel charges and igniter, combustible plug and air chamber with atmospheric pressure. Receiving chamber is perforated along whole length by apertures for outlet of combustion products. Charge adjacent to upper end of receiving chamber burns from its end. It is made of heat-resistant low-gas slow-burning compound with high temperature of combustion products and high caloricity, with low dependence of burning speed from pressure and it is protected from burning at side surface by compound preventing burning thereon, but burning together with charge. Charge, adjacent to plug, is of channel construction, quick-combustible, and it is made of heat-resistant gas-generating compound. Igniter is mounted in upper end of charge, adjacent to upper end of receiving chamber. Air chamber with atmospheric pressure is placed below receiving chamber.
Device for complex treatment of face-adjacent well zone Device for complex treatment of face-adjacent well zone / 2253011
Device for complex treatment of face-adjacent well zone has thermal gas-generator charged with fuel with electric igniter and pipe-shaped container with acid solution, made with perforation apertures, both mounted on rope-cable. Acid solution is positioned in thermal-melting hermetic tank inside the container. Device is additionally provided with depression chamber and impact-wave effect chamber, containing remotely controlled fast-action locks, with two packers, mounted at ends of pipe-shaped container. Packers are opened under pressure from gases from gas generator. After operation of gas generator is finished, packers release pipe-shaped container. Depression chamber, impact-wave effect chamber and gas generator are jointly connected.
Method for extraction of water-clogged oil deposit / 2255212
Method includes determining dominating frequency of productive bed by performing prior vibration-seismic action using surface oscillations source at different frequencies and analysis of seismic graphs from seismic receivers in product wells. Vibration-seismic effect on watered portion of productive bed of oil deposit is performed by a group of surface oscillations sources, operating at dominating frequency of productive bed. Bed fluid is extracted via product wells. After vibration-seismic effect on watered portion of productive bed of oil deposit by a group of surface oscillations sources, operating at domination frequency of productive bed, concurrent vibration-seismic effect is performed using two sub-groups of said group of surface oscillation sources. Each sub-group of group operates at determined from mathematical dependence. Average frequency of surface oscillations sources of whole group is equal to dominating frequency of productive bed. Difference in frequencies, on which each sub-group operates, is determined in accordance to linear size of watered portion of productive bed of oil deposit and is satisfactory to mathematical dependence. Concurrent vibration-seismic effect by two sub-groups of said group of surface oscillations sources is performed with forming of wave having length exceeding length of wave with dominating frequency.
Method for processing well-adjacent bed zone Method for processing well-adjacent bed zone / 2255214
Processing periods include forming of depression pressure change between well-adjacent bed zone and well hollow. Cleaning of well-adjacent bed zone is performed by prior feeding of fluid into well, forming of periodic pressure pulses in well-adjacent bed zone in form of fading standing wave, moving along the well, and decreasing pressure during fluid movement along well from well-adjacent bed zone to day surface for extraction of clogging. Plant for washing wells is used, which is connected to behind-pipe space of well and to tubing pipe. Behind-pipe space of well is isolated by packer along lower limit of perforation range. Perforation range is filled with sedimentation, formed from destroyed rock, and accumulated above packer as a result of gradual and even cleaning of well-adjacent bed zone along whole length of perforation range. Packer is disabled and well is washed clean, without raising tubing pipes column.
Method for speeding up extraction of hydrocarbons and device for its realization Method for speeding up extraction of hydrocarbons and device for its realization / 2256072
Method includes pulse treatment of productive bed by energy of atmospheric electricity by using lightning discharge. Prior to initialization of storm discharge voltage of electric field above well is measured using measuring block. Initiation of storm discharge is performed when reaching value of strength of electric field above well no less than 30 kV/m and enough for forming leading channel of lightning. To exclude corona as receiver of electric energy metallic mast is used, on upper end of which metallic fragment of spherical form is positioned having smooth external surface, or smooth metallic wire is used with its possible raising towards storm cloud. Output of receiver is connected to casing column of well. Powerful electric discharge along casing column and through its perforated portion gets into area of productive bed and disperses there.
Production bed treatment method / 2258803
Method involves forming new cracks and/or stimulating existent ones in production bed by serially well flushing and performing periodical depressive and repressive actions along with flushing thereof at circulation or outflow stages; isolating interval to be treated with packer; cyclic changing pressure with following injecting working liquid, for instance oil and/or at least one plug of chemical agent, for example of hydrochloric acid. All above operations are performed along with oscillating action of radiator installed in front of production bed interval to be treated.
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.