RussianPatents.com

Ceramic mass. RU patent 2517403.

IPC classes for russian patent Ceramic mass. RU patent 2517403. (RU 2517403):

C04B35/16 - based on silicates other than clay
Another patents in same IPC classes:
Method of ceramic ballast production / 2513949
This invention relates to construction, particularly, to production of ballast to be used in construction of roads, bridges, airfields, railway tracks, etc. Proposed method comprises preparation of stock, its grinding, compaction, drying and thermal treatment. Raw mix is produced from natural sand and metallurgical slag admixtures or those of thermal electric power station slag and ash, said mix being ground and compacted at 35-150 MPa to obtain 50-150 mm deep boards. After drying, said boards are cut to cubic shape and annealed at 1100-1180°C.
Oxydation catalyst Oxydation catalyst / 2505355
Described is oxidation catalyst, which includes extruded solid material, containing: 10-95 wt % of, at least, one matrix-binding component; 5-90 wt % of synthetic alumosilicate zeolite molecular sieve or mixture of any two or more of such sieves, each of which has 10-ring pore structure or larger than 10-ring pore structure as its largest structure of pore holes, and has ratio of silicon dioxide and aluminium oxide constituting from 10 to 150; and 0-80 wt % of optionally stabilised cerium dioxide, with catalyst containing, at least, one precious metal and, optionally, at least, one non-precious metal, in which (1) main mass of, at least, one precious metal is located on the surface of extruded solid material; (ii) at least, one precious metal is applied in one layer or several layers on the surface of extruded solid material; (iii) at least, one metal is present in volume of extruded solid material and is present in higher concentration on the surface of extruded solid material; (iv) at least, one metal is present in volume of extruded solid material and is applied in one layer or several layers on the surface of extruded solid material; or (v) at least, one metal is present in volume of extruded solid material, is present in higher concentration on the surface of extruded solid material, and is applied in one layer or several layers on the surface of extruded solid material. Described are method of claimed catalyst manufacturing, method of processing emissions of waste gases of combustion engines, and system of discharge of gases and vehicle.
Method to manufacture light-weight heat insulation items for lining of thermal aggregates / 2487102
Method may be used to manufacture light-weight silica-alumina items of normal dimensions and simple cuts, designed for lining of thermal aggregates in zones with temperature of up to 1250°C, not exposed to action of melts, wear forces and mechanical shocks. The method includes preparation of a charge from chamotte, a binder and additives, shaping, drying and baking of items.
Mixture for producing decorative facing material / 2479508
Invention relates to production of compositions of decorative facing materials which can be used in construction. The mixture for producing decorative facing material contains, wt %: crushed glass 65.0-75.0, ground tuff 10.0-15.0, chamotte 15.0-20.0.
Raw material mix for obtaining facing ceramics / 2476405
Invention relates to production of construction materials and is intended for manufacturing facing ceramic tiles. Raw material mix for obtaining facing ceramics contains quartzite with fractions 0.5-0.315 mm and 0.08-0.056 mm, with their ratio 1.25-1:1, mixed with mix of refractory clay and glass breakage with ratio of clay and glass breakage 1:1.2-1 with mixture fraction not larger than 0.056 mm. Components of raw material mix are in the following ratio, wt %: quartzite - 60-65, mix of refractory clay and glass breakage 35-40.
Method of making boards from ceramic material Method of making boards from ceramic material / 2469007
Invention relates to making ceramic boards. Proposed method comprises making initial mix containing ceramic sand with grain size not exceeding 2 mm, preferably smaller than 1.2 mm, binder and filler, settling said mix onto temporary substrate for vacuum compaction, drying and annealing. Said binder consists of water dispersion of silicon oxide colloid, referred to as silica sol, mixed with organic binder selected from water solution of polyvinyl alcohol, water soluble cellulose, or sugar. Said filler represents mineral powders selected from feldspars, nephelines, syenites mixed with clays and/or kaolin. Note here that, after annealing, said powder produce solid ceramic matrix.
Ceramic mass for brick production / 2466956
Brick contains refractory clay, quartzites. At the same time ceramic mass additionally contains liquid potassium glass and spongolite at the following ratio of components, wt %: refractory clay 76.8-82.7; quartzites 15.0-20.0; liquid potassium glass 0.2-0.3; spongolite 2.0-3.0.
Crude mixture for making facing tiles / 2444498
Invention relates to production of facing tiles. The crude mixture for making facing tiles contains coal ash and glass cutting mud, with the following ratio of components, wt %: coal ash 49.0-51.0; glass cutting mud 49.0-51.0.
Wollastonite-based ceramic mixture / 2422402
Invention relates to the ceramic industry and more specifically to making wollastonite-based lining for assemblies and foundry equipment for metallurgy of aluminium alloys. The ceramic mixture contains wollastonite, oxalic acid and water, with the following ratio of components in wt %: wollastonite 38-42; oxalic acid 2-5; water - the rest. Wollastonite contains a 70-100 mcm or 100-200 mcm or 200-300 mcm monofraction.
Crude mixture for making facing tiles / 2413696
Invention relates to production of facing tiles. The crude mixture for making facing tiles contains the following components in wt %: coal ash 49.0-51.0, dry sludge, glass cuttings 49.0-51.0. The crude mixture is moistened to moisture content of 9-11%, pressed under pressure of 20 MPa and roasted at temperature 630-660°C.
Raw mix for manufacture of wall ceramics / 2254308
Raw mix contains 50.69-51.4% of flue ash from brown coal combustion, 41.17-42.06% of microsilica from crystalline silicon production, and 6.54-7.84% of electrofilter dust from aluminum production.
Raw mix and a method for manufacturing wall ceramics / 2254309
Raw mix contains 52. 7-56.3% of microsilica, 42.5-46.5% of flue ash, and 0.8-1.2% of electrofilter dust from original aluminum production. Wall ceramic products comprises preparation of blend, molding, drying, and firing at 800°C, and additional steaming of fired products.
Raw mixture and method for making wall ceramic article / 2255919
Invention is designated for manufacturing wall ceramic articles. The raw mixture comprises the following components in the ratio, wt.-%: microsilica in manufacturing crystalline silicon, 33.9-54.5; ash fly after combustion of brown coals, 44.5-63.5, and electrofilter dust in basic manufacturing aluminum, 1.0-2.6. Electrofilter dust represents brown color waste and comprises calcium, magnesium and aluminum fluorides, cryolite and organic substances. Method involves preparing the charge, molding, drying, roasting at 800°C and moistening ready articles by keeping in water for 24 h. Invention provides enhancing resistance to cold, reducing average density and roasting temperature of material.
Raw mixture and method of producing cellular ceramic materials Raw mixture and method of producing cellular ceramic materials / 2263087
Raw mixture comprises, in mass%, 8.81-9.37 of micro-silicon dioxide, 50.0-53.3 of ash-priming, 3.12-8.6 of carbon lining, 0.06-0.072 of aluminum powder, 0.02-0.31 of sodium carboxymethyl cellulose, and 33.8-35.07 of water. The method comprises preparing the mixture, molding, swelling by vibration, drying at a temperature of 100°C, and roasting at a temperature 800°C.
Raw material mixture and method of manufacture of ceramic materials of high-porous structure Raw material mixture and method of manufacture of ceramic materials of high-porous structure / 2263088
Proposed mixture includes the following components, mass-%: microsilica, 8.06-8.31; fly ash, 56.30-58.20; aluminum powder, 0.40-0.42; detergent, 0.40-0.42; carboxymethyl cellulose, 0.81-0.98; calcium chloride, 0.17-0.19; water, 32.20-33.54. Method of manufacture of ceramic materials of high-porous structure includes preparation of mixture, molding, vibration bulging, drying at temperature of 100°C and roasting at temperature 900°C.
Refractory foamed carbon-containing material / 2263648
Invention relates to manufacturing light porous carbon-containing refractory materials. Invention proposes material showing inorganic cellular structure prepared by foaming and hardening the slip composition prepared from ground charge with a gas-forming agent - finely divided crystalline silicon mixed with water glass in the following mass ratios of components in the slip composition: water glass : silicon = (3-6):1 and charge : water glass = (1.0-1.5):1. Charge comprises components in the following ratio, mas. p. p.: mineral filling agent, 45-53; calcined shungite, 15-22; aluminum powder, 10-15. Quartz sand, quartzite, perlite, vermiculite, dinas, cement fly ash and slags are used as a mineral filling agent, Foamed material comprises 12-20 wt.-% of silicon carbide and 25-51 wt.-% of kyanite prepared by exothermic reaction at 1400-1700°C carrying out in volume of hardened porous material. Material shows porosity 60-81% and heat conductivity 0.08-0.18 Wt/m x K at 20°C and shows high mechanical indices and stability in oxidizing medium. Material can be prepared without large energy and labor consumptions.
Raw mixture for production of wall ceramic articles / 2267471
Claimed mixture contains as starting components (mass %) microsilica from crystal silicium production 51.9-52.9; fly ash from brown coal combustion 43.3-42.4; electrostatic cleaner from aluminum production 0.9-1.0, and detergent 2.9-4.7.
Raw materials mixture for production of wall ceramic products / 2268866
The invention is pertaining to the field of construction industry, in particular, to production raw materials mixture for production of wall ceramic products. The technical result of the invention is an increased frost resistance of the products at reduction of a shrinkage and temperatures of the material roasting. The raw materials mixture contains (in mass %): microsilica of production of crystalline silicon - 30.43-31.82, a fly ash from incineration of brown coals - 56.52-59.09 and a prorash from bucking of the spent carbon lining of electrolytic baths - 9.09-13.04.
Raw mixture for making wall ceramic article / 2269500
Invention proposes a raw mixture and composites for making wall ceramic articles. Proposed raw mixture for making wall ceramic articles comprises as raw components microsilica from manufacture of crystalline silicon, fly ash after combustion of brown coals, spills after crushing the depleted coal fettling of electrolyzers and detergent "Taiga" taken in the following ratio of components, wt.-%: microsilica, 30.4-31.0; fly ash, 56,3-57.5; spills after crushing the depleted coal fettling of electrolyzers, 8.8-9.0, and detergent "Taiga", 2.7-4.3. Invention provides enhancing strength and resistance to cold, decreasing shrinkage and the roasting point.
Method of manufacturing products based on silica-containing binder Method of manufacturing products based on silica-containing binder / 2283818
Invention relates to manufacture of a variety of different-destination building products such as bricks, wall blocks, footway materials, face wall and floor tiles as well as various heat-insulation and structural heat-insulation units like slabs, blocks, shells, and segments showing elevated strength and heat-insulation characteristics based on silica-containing binder using non-expensive mineral raw material and production wastes. Method involves preparing silica-containing binder with density 1.1-2.1 g/cc from mixture composed of inorganic bonding material, silica-containing component, and water under vigorous stirring in high-speed mixer at stirring speed 1500-2500 rpm, stirred particle vibration frequency2000-35000 Hz, and heating to 80-90°C followed by cooling at stirring with speed 40-100 rpm for 10-12 h to 15-25°C. Preparation of molding blend is accomplished by blending 9.0-13.5% of silica-containing binder with silica-containing aggregate, homogenizing the blend, and heat treatment of molded products at 400-950°C. When combustible aggregates are used heat treatment is carried out at 90°C.

FIELD: construction.

SUBSTANCE: ceramic mass contains, wt %: refractory clay 40.0-45.0; quartzites 10.0-15.0; wollastonite 35.0-40.0; zircon 5.0-10.0.

EFFECT: increased strength of bricks produced from a ceramic mass.

1 tbl

 

The invention relates to the field of technology of silicates and refers to compositions of ceramic masses for manufacturing of ceramic bricks.

Famous ceramic mass of the following composition,% Mas.: clay refractory 20,0-30,0; quartzite 70,0-80,0 [1]. Tensile strength at compression products derived from this ceramic mass is 53,6-56 MPa.

The objective of the invention is increasing the strength of brick, ceramic masses.

The technical result is achieved by the fact that ceramic material containing refractory clay and quartzite, additionally contains a wollastonite and zircon in the following ratio of components, mass%: clay refractory 40,0-45,0; quartzite 10,0-15,0; wollastonite 35,0-40,0; zircon 5,0-10,0.

The table shows the composition of the ceramic material.

Components

Composition,% Mas.:

1 2 3

Refractory clay

40,00 42,5 45,0

Quartzite

15,0 12,5 10,0

The wollastonite

40,0 37,5 35,0 Zircon 5,0 7,5 10,0

Tensile strength at compression, MPa

about 80

about 80

about 80

Components grind to a powder, mix. Mass moistened to 18-23% and molded her plastic way brick, which is dried and fired at a temperature of 1100-1200°C. be glazing or melting of the surface (a spoon, jab) brick by low-temperature plasma, to education on her protective layer of the vitreous.

You can use the ceramic material in the production of tiles.

Source of information

1. SU 1542932, C04B 33/00, 1990.

Ceramic mass, containing refractory clay and quartzite, characterized in that it additionally contains a wollastonite and zircon in the following ratio of components, mass%: clay refractory 40,0-45,0; quartzite 10,0-15,0; wollastonite 35,0-40,0; zircon 5,0-10,0.

 

© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.