RussianPatents.com

Method for controlling compensator of reactive power and device for realization of said method. RU patent 2282295.

Method for controlling compensator of reactive power and device for realization of said method. RU patent 2282295.

FIELD: electric engineering, on railroad train of one-phased alternating current with zone-phased adjustment, acting as means for increasing power coefficient.

SUBSTANCE: reactive power compensator is connected in turns to one of several sections of secondary winding of traction transformer, powering appropriate shoulders of rectification-inversion transformer. Depending on value of reactive power of circuit, sections of reactive power source are connected to power source. Device for realization of proposed method for controlling reactive power compensator, additionally contains keys, which through reactive power compensator are connected to sections of secondary winding of traction transformer, keys control block, operation mode set-point device, indicators of voltage and current, calculating-measuring block.

EFFECT: compensation of reactive power, consumed by electric locomotive, and decreased electric energy consumption.

4 dwg

 


 

IPC classes for russian patent Method for controlling compensator of reactive power and device for realization of said method. RU patent 2282295. (RU 2282295):

H02P1/26 - for starting an individual polyphase induction motor
H02J3/18 - Arrangements for adjusting, eliminating, or compensating reactive power in networks (for adjustment of voltage H02J0003120000; use of Petersen coils H02H0009080000)
Another patents in same IPC classes:
Three-phase launching inductive resistor Three-phase launching inductive resistor / 2267220
Three-phase launching inductive resistor has magnetic duct, consisting of four coaxially positioned ferromagnetic plates, acting as yoke and forming additional likeness of ventilator blades. On each of three cylinders two semi-windings are positioned, fourth one - of the greatest diameter - finalizes the ferromagnetic system. Semi-windings are joined in accordance to zigzag scheme. First, second and third cylinders have different length, selected so, that surface area remained unchanged, to provide for same level of magnetic duct saturation. Through fourth (external) cylinder, additional portion of magnetic flow is closed, which flow is formed by winding of greatest diameter. End output of first semi-winding of greatest diameter, end output of first semi-winding of average diameter is connected to end output of second semi-winding of greatest diameter, end output of first semi-winding of greatest diameter is connected to end output of second semi-winding of middle diameter, beginning outputs of second semi-windings are joined at same point, and beginning outputs of first semi-windings are meant for connection at three-phase winding of rotor of asynchronous engine.
Commutatorless alternating-current machine Commutatorless alternating-current machine / 2265271
Proposed commutatorless ac machine that has rotor and stator carrying m-phase running winding is also provided with additional winding incorporating same quantity of coil groups as running winding; when machine is running as motor, capacitive member is connected in parallel with additional winding leads; when it is running as generator, inductive member is connected in parallel with additional winding leads.
Induction-motor drive Induction-motor drive / 2262179
Proposed induction motor drive is characterized in that starting switch is turned on in the beginning of starting process and motor stator windings are connected in series with capacitors. Under such conditions starting current is limited. Accelerating switch is turned on upon termination of starting process, motor and capacitors start running in parallel with supply mains.
Shaft torque limiting device for induction motor Shaft torque limiting device for induction motor / 2259003
Proposed device has switching unit, current transformer and potential transformer inserted in motor stator circuit, and amplifier. Newly introduced in device are two matching units, dc bridge with standard resistors inserted in its two arms and resistors of resistive optocouplers, in its other arms. Current transformer output is connected through first matching device to photodiode of first resistive optocoupler; potential transformer output is connected through second matching device to photodiode of second resistive optocoupler. Output of dc voltage supply is connected across two diagonally opposite power terminals of dc bridge whose output diagonally opposite terminals are connected to input of amplifier; output of the latter is connected through threshold unit to switching unit input.
Method for limiting induction-motor starting current Method for limiting induction-motor starting current / 2253179
Proposed method includes correction of comparator current reactive component by means of parallel-connected correction converter using three-phase circuit arrangement with dual-operation diodes and storage reactor used as load. Bridge diodes are supposed to be controlled by vertical method involving two-fold connection during each period of supply mains affording independent two-coordinate regulation of converter current and its phase shift relative to voltage. For proportional regulation of mentioned coordinates use can be made of proposed mathematical expressions of functional plotter characteristics at input of diode pulse-phase control system.
Pulse-phase control system Pulse-phase control system / 2248659
Proposed system has sync signal source, two relay units, adder, integrator, control pulse shaper, voltage regulator, integrator, and three-phase voltage supply. Newly introduced in proposed system are first rectifier and first limiting amplifier, as well as series-connected second rectifier and second limiting amplifier. Inputs of rectifiers are connected to three-phase voltage supply and outputs of limiting amplifiers, to power terminals of first relay unit. Power terminals of limiting amplifiers are connected to output of voltage regulator.
Method for reactive power correction device Method for reactive power correction device / 2280934
Proposed method for controlling reactive power correction device incorporating thyristor-reactor group, higher-harmonic capacitor-bank filters, and reactive-power static condenser built around fully controllable diodes includes measurement of voltage U across ac buses, its comparison with Umax and Umin settings, generation of control signals, and generation of harmonics in static condenser current in phase opposition to current harmonics of thyristor-reactor group detected during analysis.
Station for testing electric engines Station for testing electric engines / 2271547
Station for testing electric engines has transformer, controllable rectifier, inverter, engine, generator, first and second smoothing reactors, connecting shaft, voltage indicator, first and second current indicators, device for calculating input active current, first and second comparison element. Proportional-integral adjuster, pulse-duration modulator, autonomous voltage transformer and source of reactive power in form of a capacitor. Utilization of station for testing electric engines allows to increase value of power coefficient up to 0,994, and during testing of, for example, electric engine NB418 K6 of electrically driven train current consumed from network is decreased to 5-7 A.
Voltage converter built around combined circuit arrangement Voltage converter built around combined circuit arrangement / 2269196
Proposed converter is built around combined circuit arrangement incorporating three-phase bridge circuit of voltage inverter (with series-interconnected semiconductor devices of IGCT, IGBT, and other types) with one or more series-interconnected single-phase bridge voltage converters (whose semiconductor devices are not interconnected in series)connected to each of its phase outputs. All change-over operations are made in three-phase bridge circuit whose arms form valves with series-interconnected semiconductor devices and which forms output voltage base of converter at low frequency (such as that equal to supply mains frequency). Bridge arms incorporating series-interconnected semiconductor devices having different on/off delay times are changed over by means of switching circuits specially inserted in circuit.
Device for automatic tuning of adjustable-gap arc-control reactor correction Device for automatic tuning of adjustable-gap arc-control reactor correction / 2266600
Proposed device for automatic tuning of adjustable-gap arc-control reactor correction has motor control unit connected to correction maladjustment recording unit and to control input of mentioned arc-control reactor provided with motor for air gap adjustment. Motor control unit has first contactor control unit connected through first auxiliary contact to correction maladjustment recording unit, second contactor control coil connected through second auxiliary contact to correction maladjustment recording unit, and third contactor control coil. First and second power contacts are connected to control input of adjustable-gap arc-control reactor; third and fourth auxiliary contacts are connected to short-pulse shaper. Final relay is connected to short-pulse shaper and its contact is inserted in third control coil of contactor. Fifth and sixth auxiliary contacts are connected in series with first contactor control coil and with second contactor control coil, respectively. Motor control unit also has rectifier bridge connected through limiting resistor and third power contact to control input of mentioned reactor incorporating air gap adjusting motor.
Reactive power correcting device Reactive power correcting device / 2256994
Reactive power correcting device has traction transformer, electric-locomotive rectifying converter with traction motor connected thereto, two reactive-power sources, supply-mains mode sensor, and switching unit; newly introduced are also two switching members, each incorporating thyristor switch, voltage sensor built around thyristors, and thyristor-switch control pulse shaper, as well as two resistors; thyristor switches are connected in series with first and second reactive power sources and resistors are connected in parallel with capacitors of respective reactive-power sources.
Transistorized tree-phase reactive-current supply Transistorized tree-phase reactive-current supply / 2254658
Proposed device tat can be used to raise efficiency of electrical energy consumption due to relieving power supply mains of reactive currents has three-phase diode bridge connected to supply mains through three reactors; connected at dc output of this diode bridge through isolating diodes are three storage capacitors. Device also has bridge inverter built around six transistors connected through their outputs to ac input of diode bridge and three additional transistors connecting dc input of inverter to storage capacitors. Transistor control system functions to convert signals arriving from outputs of voltage sensors across load, load and supply mains current sensors, and to generate thyristor control signals so that source automatically generates correction currents equal to reactive currents consumed by load, and only resistive component of load currents is consumed from supply mains.
Three-phase reactive-power corrector Three-phase reactive-power corrector / 2251192
Proposed reactive-power corrector has three-phase transformer, three single-phase inverters with control systems, rectifier, three single-phase current transformers, potential transformer, three single-phase reactive-current sensors, three voltage sensors, three comparison gates, and load; in addition it is provided with newly introduced unit of off-line voltage inverters, active and reactive power computing unit, active and reactive power ac component computing unit, desired current computing unit, off-line voltage inverter control unit, and current transformers of off-line voltage inverters.
Single-phase instant-power passive component corrector Single-phase instant-power passive component corrector / 2249896
Proposed corrector uses circuit arrangement of single-phase voltage inverter in the form of transistor bridge incorporating inverted diodes with storage capacitor connected across two diagonally opposite dc terminals and two diagonally opposite ac terminals connected through choke to supply mains in parallel with load; choke has sectionalized coil, that is it is made of two sections with output lead in-between; corrector is provided with newly introduced switch built around two thyristors and used to connect one section of choke coil during discharge of storage capacitor and both sections during its charge.
Method and circuit arrangement for using polarized devices in operation on ac current Method and circuit arrangement for using polarized devices in operation on ac current / 2249285
Polarized capacitors or electrochemical batteries are used in standard ac circuits as polarized electrical charge storage devices with new circuit pattern. In one of alternatives opposing-series configuration of first and second polarized devices is used in ac network to improve its operating conditions. At least one dc power supply is provided to keep polarized devices shifted in forward direction when ac signal arrives at them. This ac signal is applied to devices connected in series opposition to excite ac load. These devices are sufficiently shifted by at least one dc voltage supply so that they remain displaced in forward direction upon connection to ac signal.
Method and circuit arrangement for using polarized devices in operation on ac current Method and circuit arrangement for using polarized devices in operation on ac current / 2249285
Polarized capacitors or electrochemical batteries are used in standard ac circuits as polarized electrical charge storage devices with new circuit pattern. In one of alternatives opposing-series configuration of first and second polarized devices is used in ac network to improve its operating conditions. At least one dc power supply is provided to keep polarized devices shifted in forward direction when ac signal arrives at them. This ac signal is applied to devices connected in series opposition to excite ac load. These devices are sufficiently shifted by at least one dc voltage supply so that they remain displaced in forward direction upon connection to ac signal.
Single-phase instant-power passive component corrector Single-phase instant-power passive component corrector / 2249896
Proposed corrector uses circuit arrangement of single-phase voltage inverter in the form of transistor bridge incorporating inverted diodes with storage capacitor connected across two diagonally opposite dc terminals and two diagonally opposite ac terminals connected through choke to supply mains in parallel with load; choke has sectionalized coil, that is it is made of two sections with output lead in-between; corrector is provided with newly introduced switch built around two thyristors and used to connect one section of choke coil during discharge of storage capacitor and both sections during its charge.
Three-phase reactive-power corrector Three-phase reactive-power corrector / 2251192
Proposed reactive-power corrector has three-phase transformer, three single-phase inverters with control systems, rectifier, three single-phase current transformers, potential transformer, three single-phase reactive-current sensors, three voltage sensors, three comparison gates, and load; in addition it is provided with newly introduced unit of off-line voltage inverters, active and reactive power computing unit, active and reactive power ac component computing unit, desired current computing unit, off-line voltage inverter control unit, and current transformers of off-line voltage inverters.
Transistorized tree-phase reactive-current supply Transistorized tree-phase reactive-current supply / 2254658
Proposed device tat can be used to raise efficiency of electrical energy consumption due to relieving power supply mains of reactive currents has three-phase diode bridge connected to supply mains through three reactors; connected at dc output of this diode bridge through isolating diodes are three storage capacitors. Device also has bridge inverter built around six transistors connected through their outputs to ac input of diode bridge and three additional transistors connecting dc input of inverter to storage capacitors. Transistor control system functions to convert signals arriving from outputs of voltage sensors across load, load and supply mains current sensors, and to generate thyristor control signals so that source automatically generates correction currents equal to reactive currents consumed by load, and only resistive component of load currents is consumed from supply mains.
Reactive power correcting device Reactive power correcting device / 2256994
Reactive power correcting device has traction transformer, electric-locomotive rectifying converter with traction motor connected thereto, two reactive-power sources, supply-mains mode sensor, and switching unit; newly introduced are also two switching members, each incorporating thyristor switch, voltage sensor built around thyristors, and thyristor-switch control pulse shaper, as well as two resistors; thyristor switches are connected in series with first and second reactive power sources and resistors are connected in parallel with capacitors of respective reactive-power sources.
Device for automatic tuning of adjustable-gap arc-control reactor correction Device for automatic tuning of adjustable-gap arc-control reactor correction / 2266600
Proposed device for automatic tuning of adjustable-gap arc-control reactor correction has motor control unit connected to correction maladjustment recording unit and to control input of mentioned arc-control reactor provided with motor for air gap adjustment. Motor control unit has first contactor control unit connected through first auxiliary contact to correction maladjustment recording unit, second contactor control coil connected through second auxiliary contact to correction maladjustment recording unit, and third contactor control coil. First and second power contacts are connected to control input of adjustable-gap arc-control reactor; third and fourth auxiliary contacts are connected to short-pulse shaper. Final relay is connected to short-pulse shaper and its contact is inserted in third control coil of contactor. Fifth and sixth auxiliary contacts are connected in series with first contactor control coil and with second contactor control coil, respectively. Motor control unit also has rectifier bridge connected through limiting resistor and third power contact to control input of mentioned reactor incorporating air gap adjusting motor.
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.