|
|
![]() |
Method to produce radioisotope strontium-82 Method to produce radioisotope strontium-82 includes radiation of α-particles or 3He target from krypton by accelerated beams. The target is one isotope or cascade from several isotopes of crypton, every of which represents crypton enriched by i isotope to concentration that exceeds concentration of i isotope in natural mix of crypton isotopes, and simultaneously exceeding concentration of any other isotope in mixture of crypton isotopes, at the same time crypton isotopes in the cascade are arranged in series in direction of the accelerated particle beam in the decreasing order of atomic masses of isotopes having maximum concentration in the mixture of crypton isotopes, and in process of one or more threshold nuclear reactions 80,82,83,84,86Kr(α,xn)82Sr or accordingly one or more threshold nuclear reactions 80,82,83,84,86Kr(3He,xn)82Sr, the target radioisotope 82Sr is accumulated in the target. |
![]() |
Method of obtaining europium-155 for gamma flaw detection Method of obtaining radioactive isotope europium-155 for being used in gamma flaw detection at target irradiation with ionising radiation with samarium-154. Target irradiation is performed with proton beam of cyclotron. |
![]() |
Way of reception of uranium-230 radionuclide for therapy of oncologic diseases Invention concerns radionuclide reception 230U for therapy of oncologic diseases. The invention allows simplifying process of manufacture of a radio drug on the basis of short-living α-nuclides due to a natural radionuclide 230Th. The way includes irradiation of the target containing a natural isotope of thorium - 230Th in a proton beam of a cyclotron. A target radioactive isotope 230Th is accumulated in a target in the course of threshold nuclear reaction 230Th (p, n) 230Pa→230U. As a target material bonds of 230ThF4 or 230ThO2 or metal 230Th are used. The irradiated target is taken from the accelerator, held and exposed to radiochemical clearing for radioactive isotope reception 230U of standard quality. The chain of natural disintegration of an isotope 230U leads to an output of the α-particles used in a nuclear medicine for therapy of oncologic diseases. |
![]() |
Method for radiostrontium preparation (versions) Group of inventions is related to the field of nuclear technology and radio chemistry and is intended for preparation and extraction of radioactive isotopes for medical purpose. Method for preparation of radiostrontium includes radiation of target with flow of accelerated charged particles. Inside target shell there is metal rubidium. After target radiation rubidium is melted inside target shell. Extraction of radiostrontium from liquid rubidium is done by surface sorption of different materials that contact with liquid rubidium. Sorption is carried out at the temperature of sorbing surface of 275-350°C. Sorbing surface is internal surface of radiated target shell. After performance of sorption rubidium is removed from target shell. Then radiostrontium is washed from internal surface of target shell by dissolvents. |
![]() |
|
![]() |
|
![]() |
Another patent 2531143.
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English. |