RussianPatents.com

Chitin; chondroitin sulfate; hyaluronic acid; derivatives thereof (C08L5/08)

Method of producing chitosan derivative, having amphiphilic properties

Method of producing chitosan derivative, having amphiphilic properties

Invention relates to a chitosan derivative, wherein a chitosan fragment of general formula (I) , where R is a fatty or amino acid residue, n for a hydrophilic ligand ranges from about 12% to about 25% with respect to the number of monosaccharide residues of chitosan, m for a hydrophobic ligand ranges from about 30% to about 60% with respect to the number of monosaccharide residues of chitosan. The invention also relates to versions of a method of producing said derivative.

Method of producing biodegradable film

Method of producing biodegradable film

Method is carried out by mixing chitosan, a glycerine plasticiser and a structure-forming agent, followed by forming the film at room temperature. The method includes dissolving 2.0 g of chitosan in 100 ml of 2% acetic acid at room temperature, adding to the obtained chitosan solution 10% aqueous gelatine solution in ratio of 3:5 and mixing. Glycerine is added to the mixture first, followed by 4% aqueous transglutaminase solution and subsequent mixing on a magnetic mixer for not more than 2 minutes at temperature of the mixture of 45-55°C.

Viscoelastic gels as new fillers

Viscoelastic gels as new fillers

Invention refers to medicine. Described are biomaterials prepared by mixing an autocross-linked derivative of hyaluronic acid with hyaluronic acid derivative cross-linked with 1,4-butandiol diglycidyl ether (BDDE) in a weight ratio from 10:90 to 90:10, as new fillers.

Solid-phase method of production of water-soluble bioactive nanocomposite based on hyaluronic acid modified by citric acid and gold nanoparticles

Solid-phase method of production of water-soluble bioactive nanocomposite based on hyaluronic acid modified by citric acid and gold nanoparticles

Method of production of the water-soluble bioactive nanocomposite comprising salt of hyaluronic acid modified by citric acid or salt of citric acid, as a matrix, and gold nanoparticles as the filler is carried out by chemical interaction of solid-phase powders of salt of hyaluronic acid, citric acid or salt of citric acid and aurichlorohydric acid or salt of gold under the temperature from -18° to 125°C, under conditions of simultaneous action of pressure from 50 to 1000 MPa and the shear deformation in a mechanochemical reactor.

Chitosan carboxyalkylamide hydrogel, preparing it and using in cosmetology and dermatology

Chitosan carboxyalkylamide hydrogel, preparing it and using in cosmetology and dermatology

Invention refers to chitosan carboxyalkylamide hydrogel and may be used for cosmetic and dermatological treatment of skin burns. Chitosan carboxyalkylamide hydrogel of pH close to that of skin and making 6.5 to 7.2 contains 40 to 90 mole % of the groups of N-carboxyalkylaminde D-glucosamine of formula (I) wherein n represents an integer 1 to 8, 60 to 10 mole % of the protic groups of D-glucosamine, and 5 to 15 mole % of the groups of N-acetyl-D-glucosamine. A method for preparing said hydrogel involves preparing an acid solution of chitosan of a degree of acetylation of 85 to 95%, providing a reaction of produced additive chitosan salt in an aqueous solution of diorganic acid and correcting pH of the prepared solution.

Biocompatible, biodegradable porous composite material and method of producing said material

Biocompatible, biodegradable porous composite material and method of producing said material

Biocompatible, biodegradable porous composite material contains chitosan and hydrosilicate filler in amount of 0.05-10% of the weight of chitosan and has a system of through pores with size of 5-1000 mcm. The method of producing the material involves mixing hydrosilicate filler, which is pre-dispersed in an aqueous medium with pH=5-7 in an ultrasonic field with frequency v=20-100 kHz for 5-60 minutes, with chitosan in an amount which corresponds to its concentration in the solution of 1-4 wt %, the amount of the filler being equal to 0.05-10% of the weight of chitosan; the obtained mixture is then intensely mixed at temperature of 20-50°C for 20-60 minutes; concentrated acetic acid is added in an amount which enables to obtain, in the mixture of the aqueous solution, acetic acid with concentration of 1-3%; the mixture is intensely mixed at temperature of 20-50°C for 20-250 minutes and then cooled to temperature of -5 to -196°C; the solvent is removed in a vacuum; the obtained end material is treated with a neutralising agent, washed with water to pH=5-7 and then dried.

Pectin- and chitosan-based biodegradable film

Pectin- and chitosan-based biodegradable film

Biodegradable film contains pectin, chitosan, water, 1N hydrochloric acid, a plasticiser - glycerine and a structure-forming agent - 3% methyl cellulose solution.

Solid-phase method of producing bioactive nanocomposite

Invention relates to synthetic polymer chemistry. The nanocomposite contains a matrix in form of a cross-linked salt of hyaluronic acid which is modified with sulphur-containing compounds and nanoparticles of a noble metal as filler. A film of the cross-linked salt of hyaluronic acid which is modified with sulphur-containing compounds is obtained through chemical reaction of the salt of hyaluronic acid with a mixture of two sulphur-containing compounds and with a cross-linking agent, under conditions with pressure between 50 and 300 MPa and shear deformation in a mechanical reactor at temperature between 20 and 30°C. The reactor used to obtain the film is a Bridgman anvil.

Method for producing viable breast cells

Method for producing viable breast cells

Solution of viable breast cells after enzymatic degradation in a collagenase solution of analysed tissue at temperature 37°C for 30-35 minutes, are applied on a biomaterial of a native form of hyaluronic acid, stored at room temperature and constant humidity 30-50 %, and cell viability is controlled by discoloration of cell monolayer.

Novel cross-linking reagents for producing chitosan-based biocompatible materials

Novel cross-linking reagents for producing chitosan-based biocompatible materials

Articles based on biologically active polymer materials can be used in surgery when treating wounds and as materials for temporary replacement of body tissue, in biotechnology for obtaining matrices for growing cell cultures, in pharmaceuticals as carriers of enzymes and other biologically active compounds. The cross-linking reagents are 2,4-derivatives of 3-oxa glutaric dialdehyde (2,2'-oxydiacetaldehyde). These compounds can be obtained via periodate oxidation of monosaccharides, nucleosides and nucleotides.

Method of obtaining polysaccharide material

Method of obtaining polysaccharide material

Invention relates to a method of obtaining polysaccharide fibre for making materials, specifically for making surgical suture materials absorbable in a human and a mammal body, absorbable and non-absorbable dressing material and absorbable textile matrix materials. The method is characterised by that 2.4-4.0 wt % solution of polysaccharide in dimethylacetamide which contains 4.56-10.00 wt % lithium chloride is mixed with 1.0-5.0 wt % poly-N-vinylpyrrolidone with molecular weight of 8-35 kDa or a metallopolymer complex - fine-grained silver stabilised by poly-N-vinylpyrrolidone in such an amount that, content of fine-grained silver relative polysaccharide dissolved in spinning solution ranges from 0.07 to 0.87 wt %. Mass ratio of polysaccharide: metallopolymer complex equals 88.0-99.0:1.0-12 wt %. The mixture is intensely stirred, held, filtered, degassed and the obtained spinning solution is extruded at room temperature into an alcohol deposition tank in form of water-soluble aliphatic C2 and C3 alcohols. The fibre is then processed in plastification and washing tanks and dried.

Taxanes covalently bonded with hyaluronic acid or hyaluronic acid derivatives

Taxanes covalently bonded with hyaluronic acid or hyaluronic acid derivatives

Invention relates to taxane, especially to paclitaxel and docetaxel covalently bonded with hyaluronic acid or a hyaluronic acid derivative, used as active substance in pharmaceutical compositions which are used in oncology, for treating tumours, autoimmune diseases and restenosis, as well as a coating for stents and medical devices. The covalent bond is formed between hydroxyl groups of taxane and carboxyl groups or hydroxyl groups of hyaluronic acid or hyaluronic acid derivatives, or amino groups of deacetylated hyaluronic acid. Bonding can take place using a linking compound (spacer compound) which bonds taxane with hyaluronic acid or hyaluronic acid derivative under the condition that, the linking compound is different from hydrazide.

Composition - osteoinducer and osteoconductor in treatment of bone pathology in dentistry and oral surgery and method of obtaining composition - osteoinducer and osteoconductor in treatment of bone pathology in dentistry and oral surgery

Composition includes chitosan gel, which has bactericidal properties, representing matrix for including in it of water solution for "Adgelon" injection, which contains serum glycoprotein from blood of livestock, possessing biological activity in supersmall doses 10-9-10-15 mg/ml, and calcium salt - preparation "Adgelon". In obtaining composition medicine "Adgelon" is immobilised on chitosan gel.

Complex matrix for medico-biological application

Complex matrix for medico-biological application

Complex matrix consists of at least one biologically compatible polymer of natural origin, structured with sewing agent, which represents two- or multi-functional molecule, selected from epoxides, epihalohydrines and divinyl sulphone, on said polymer inoculated are chains with molecular weight less than 50000 daltons, selected from polymers of natural origin of small size, preferably, derivatives of cellulose or other biological polymer derivatives which naturally are not present in human organism, and/or non-polymerised chains with properties of oxidation inhibitors or ability to inhibit reactions of matrix decomposition, preferably, vitamins, enzymes or molecules, consisting of one or several cycles, degree of inoculation, expressed as ratio of moles of inoculated molecules and quantity of moles of polymer units, constitutes from 10 to 40%. Also described are method of obtaining such matrix and its application for separation, replacement, filling or addition of biological fluid or tissues.

Method for production of modified paper

Invention relates to papermaking technology, precisely to production of modified paper with higher gas-proof and heat-protective properties, and can be applied in constructions, aircraft and automobile constructions, shipbuilding. The method includes treatment of paper with the mixture of 5-7% aqueous solution of polyvinyl alcohol with 5-7% aqueous solution of chitosan at their ratio 1:1 within 10-15 minutes, thereafter treatment with 15-20% aqueous solution of methyl phosphate borate and drying.

Compound for production of modified paper

Invention relates to production technology of synthetic paper, precisely to production of modified paper with higher gas-proof and heat-protective properties, and can be applied in constructions, aircraft and automobile constructions, shipbuilding. The compound contains 5-7% aqueous solution of polyvinyl alcohol, 15-20% aqueous solution of methyl phosphate borate and 5-7% aqueous solution of chitosan at the following ratio, pts. wt. polyvinyl alcohol - 5-7; chitosan - 5-7; methyl phosphate borate - 15-20; water - 275-266.

Chitosanium perchlorate, method for its preparing and power-consuming composition comprising thereof

Chitosanium perchlorate, method for its preparing and power-consuming composition comprising thereof

Invention describes chitosanium perchlorate of the following formula: C6O4H9NH3ClO4. This compound shows such properties as explosion-proof, absence of toxicity, resistance to moisture and heating, mechanical effects and possesses high oxidizing and binding properties. This allows its using in power-consuming compositions in mixture with chitosanium dodecahydro-clozododecaborate wherein it functions as a binding agent. The quantitative ratio between chitosanium dodecahydro-clozododecaborate in the composition is determined by required regimen of combustion: the more content of chitosanium perchlorate the higher activity of the composition.

Chitosan product, method for its preparing (variants)

Chitosan product, method for its preparing (variants)

Invention relates to preparing biologically active chitosan substances and their derivatives. Invention describes a modified chitosan substance showing pH-neutral reaction and plastic structure of chitosan particles as fractal chitosan particles of size of nanofractals from 1 nm, not less, and to 5000 nm, not above, or as cross-linked net-shaped polymer having multiple cavities of size from 1 nm, not less, to 50 nm, not above. Invention describes methods for their preparing. Invention provides high transdermal penetration of chitosan substance and enhanced capacity for administration of medicinal or biologically active substances into chitosan substance. Invention can be used in manufacturing cosmetic, curative-cosmetic, pharmacological preparations, biologically active food supplements and foodstuffs.

Chitosan-base composition reducing nitrate content in plant growing production

Invention describes a chitosan-base composition reducing the content of nitrates in plant growing production. The composition comprises chitosan of molecular mass 20-150 kDa, organic acids - mixture of succinic, ascorbic and sorbic acids in the mass ratio = 2:1:1, respectively, activating agents of nitrate and nitrite reductases - iron nitrate, ammonium molybdate, indolyl acetic acid and ethylenediaminetetraacetic acid in the mass ratio = 20:5:1:1, respectively; or iron nitrate, ammonium molybdate, indolyl acetic acid and N,N-dicarboxymethylglutamic acid in the mass ratio = 20:5:1:1, respectively, and substances enhancing synthesis of chlorophyll - 2-oxoglutaric acid and L-glutamic acid in the mass ratio = 30:1, and a surface-active substance also in the following ratio of above indicated components, wt.-%: chitosan, 15-25; organic acids, 15-25; activators of nitrate and nitrite reductases, 25-30; enhancers of chlorophyll synthesis, 29-35, and surface-active substance, 1-3. The composition provides enhancing assimilation of inorganic nitrogen in plant and reduces the content of nitrates in plant growing productions.

Nanocomposite and method of its production

Nanocomposite and method of its production

Proposed nanocomposite can be used as component contributing to charges of consumer properties of materials made on its base. Nanocomposite includes fibrils of filler-chitin individualized to nanosizes with distance between fibrils from 709 to 20-22 nm and water-soluble polymeric matrix in interfibril space. Degree of filling of nanocomposite is 0.05-0.25% mass. Fibrils are arranged in parallel and they have cross size of 4 nm. Method of production of nanocomposite comes to the following: free-radical polymerization in water medium of at least one monomer of row of acrylic acid, salt of acrylic acid, acrylamide is carried out in presence of filler. Initiator is chosen from the row of water-soluble peroxides, hydroperoxides or their salts, potassium persulfate. Individualization to nanosizes of fibrils is done simultaneously with process of polymerization and/or with combination of said process with mechanical disintegrating action by disintegrating or pressing, or pressing with abrasion shift. Nanocomposite is obtained in form of film, being pervaporation membrane.

Another patent 2551035.

© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.