RussianPatents.com
|
Data analysis system in the field of telemedicine. RU patent 2251965. |
|
FIELD: medical engineering. SUBSTANCE: selected reference point in every cardiac cycle on TP-segment. Values of neighboring N=2n+1 reference points also belonging to TP-segment are recorded, n=1,2,…, beginning from the first reference point. Other reference points are set to zero. The central reference point value is left without changes in a group of 2n+1 member. Reference point values of each of n pairs of reference points symmetrically arranged relative to the central reference point are scaled relative to condition Uj=U0Kj, where U0 is the central reference point amplitude, Uj is amplitude of j-th reference point pair, j=1,2,…,n is the number of each reference point pair relative to the central reference point, Kj is the scaling coefficients determined from received signal suppression condition of the first n spectral zones in spectrum. The so formed electrocardiogram signal reference point groups sequence is let pass through lower frequency filter with isoline drift signal being obtained being produced on output. The signal is amplified and subtracted from the initial electrocardiogram signal that is preliminarily delayed for lower frequency filter delay time. Device has the first lower frequency filter, discretization unit and unit for selecting anchor reference points connected in series, as well as subtraction unit, unit for saving N reference points, scaling unit, the second lower frequency filter, amplifier and delay unit. Output of the unit for selecting anchor reference points is connected to the first input of memory unit the second input of which is connected to discretization unit output. Each of N memory unit outputs is connected to one of N inputs of scaling units. Scaling unit output is connected to the second lower frequency filter input which output is connected to amplifier input. Amplifier output is connected to the first input of subtraction unit, the second output of subtraction unit is connected to delay unit output. Its input is connected to output of the first lower frequency filter. Subtraction unit output is the device output. EFFECT: reliable removal of isoline drift. 2 cl, 8 dwg
|
Method for correcting vegetative balance in patients suffering from acute myocardial infarction / 2249427 Method involves recording electrocardiogram and cardiorhythmogram on the background of medicamentous therapy beginning from 7-10 day of the disease. The cardiorhythmogram is shown to the patient. Respiratory training session is carried out. Inspiration and expiration are to be equal in duration, each making Ѕ of cardiorhythmogram breathing wave. |
Pathophysiologically oriented monitoring for carrying out monitoring control of human vegetative process in human being / 2243719 Method involves measuring cardio- and hemodynamic values, calculating estimates of the values and displaying the estimates on monitor. Measuring and calculating each cardio- and hemodynamic value is carried out during basic periods of their oscillations corresponding to heart contraction cycle and respiratory cycle related to absolute time. |
Pathophysiologically oriented monitoring for carrying out monitoring control of human vegetative process in human being / 2243719 Method involves measuring cardio- and hemodynamic values, calculating estimates of the values and displaying the estimates on monitor. Measuring and calculating each cardio- and hemodynamic value is carried out during basic periods of their oscillations corresponding to heart contraction cycle and respiratory cycle related to absolute time. |
Method for correcting vegetative balance in patients suffering from acute myocardial infarction / 2249427 Method involves recording electrocardiogram and cardiorhythmogram on the background of medicamentous therapy beginning from 7-10 day of the disease. The cardiorhythmogram is shown to the patient. Respiratory training session is carried out. Inspiration and expiration are to be equal in duration, each making Ѕ of cardiorhythmogram breathing wave. |
Data analysis system in the field of telemedicine / 2251965 Selected reference point in every cardiac cycle on TP-segment. Values of neighboring N=2n+1 reference points also belonging to TP-segment are recorded, n=1,2,…, beginning from the first reference point. Other reference points are set to zero. The central reference point value is left without changes in a group of 2n+1 member. Reference point values of each of n pairs of reference points symmetrically arranged relative to the central reference point are scaled relative to condition Uj=U0Kj, where U0 is the central reference point amplitude, Uj is amplitude of j-th reference point pair, j=1,2,…,n is the number of each reference point pair relative to the central reference point, Kj is the scaling coefficients determined from received signal suppression condition of the first n spectral zones in spectrum. The so formed electrocardiogram signal reference point groups sequence is let pass through lower frequency filter with isoline drift signal being obtained being produced on output. The signal is amplified and subtracted from the initial electrocardiogram signal that is preliminarily delayed for lower frequency filter delay time. Device has the first lower frequency filter, discretization unit and unit for selecting anchor reference points connected in series, as well as subtraction unit, unit for saving N reference points, scaling unit, the second lower frequency filter, amplifier and delay unit. Output of the unit for selecting anchor reference points is connected to the first input of memory unit the second input of which is connected to discretization unit output. Each of N memory unit outputs is connected to one of N inputs of scaling units. Scaling unit output is connected to the second lower frequency filter input which output is connected to amplifier input. Amplifier output is connected to the first input of subtraction unit, the second output of subtraction unit is connected to delay unit output. Its input is connected to output of the first lower frequency filter. Subtraction unit output is the device output. |
Method for evaluating the severity of hemorrhagic shock in patients / 2251966 According to 4-point scale one should evaluate the state of 10 clinical, hemodynamic and instrumental values in patients: patient's skin by detecting its color and moisture; hemodynamic values: heart rate, systolic arterial pressure, central venous pressure, shock index; central nervous system by studying the value of Glasgow scale; respiratory system - the frequency of respiratory movements and blood saturation; cardio-vascular system - myocardial necessity in oxygen. Each value has its own point, moreover, 0 points corresponds to that fact that the index under inspection is within age standard, 1 point - when physiological parameters at rest are different against the standard, but their functions are compensated by organs of one or two systems, 2 points - compensation is kept due to alterations in more than 2 systems and it reaches its peak, 3 points correspond to adaptation failure or affected function of one or several systems, and the sum of points being 0-4 in patients one should diagnose the absence of hemorrhagic shock, at 5-9 points - the severity of hemorrhagic shock corresponds to degree I, at 10-19 points - to degree II, at 20 points and more - to degree III. |
Method for estimating arterial bloodstream tone / 2261039 Method involves recording peripheral differential upper extremity blood vessel rheogram and phonocardiogram in synchronous way. The second phonocardiogram beginning and the deepest rheogram points are detected. Pulse way propagation time reduction being found, arterial bloodstream tone growth conclusions are drawn. |
Device and method for estimating functional state of human organism regulation and control systems / 2262887 Method involves recording patient electrocardiogram in maximum comfort state in one lead and photopletysmogram. Vascular tone index (VTI) is measured as time interval from next in turn R-tooth peak to the next following pulse oscillation. Set of values is built and statistically processed. Mode value MoVTIR is calculated as patient rest state characteristic to estimate current functional state of patient regulation and control systems. Electrocardiogram in maximum comfort state is recorded in one lead and photopletysmogram at the same time. A set of RR-intervals and time intervals from next in turn R-tooth peak to the next following pulse oscillation is built and statistically processed. Amo, Mo and MoVTI values are calculated to estimate current functional state of patient. Neighboring cardio-interval values are additionally measured and mean square deviation MSDP is calculated and then variational pulse ametria SAT index is calculated from formula SAT=0.1 x Mo/MSDP and integral regulation and control system stress index of patient (IRCSS)is calculated from formula IRCSS=(SAT) x [1+(Movtir-MoVTI)MoVTI. Patient organism regulation and control system state is estimated as one corresponding to normative neuropsychic stress characteristic for rest state or when working without significant psychic tension with IRCSS value being within interval from 40 to 300, working neuropsychic stress characteristic for significant tension belonging interval from 300 to 900. Neuropsychic overstress showing necessity of rest belongs to an interval from 900 to 3000. Neuropsychic overstress threatening health belongs to an interval from 3000 to 10000. Attrition showing emergency of escaping from the current state with obligatory cardiologist advice takes place when the value is greater than 10000. The device has unit for recording electrocardiogram, data processing unit and calculation unit connected to estimation unit with its output and unit for recording pulse oscillations, analog-to-digital converter unit having inputs connected to electrocardiogram-recording unit and pulse oscillations-recording unit outputs and its output are connected to calculating unit inputs via the data processing unit, and display unit for showing patient regulation and control systems state. Units for processing and calculating are manufactured on microprocessor base. Signals are form on exit from the microprocessor, their values being corresponding to integral regulation and control system stress index value of a patient(IRCSS). The unit for recording pulse oscillations is designed as electronic transducer set on patient finger. The unit for recording electrocardiogram, records cardiac pulses in single lead. |
Device for estimating influence of breathing onto changes in pulse rate / 2266040 Device can be used in practical and sports medicine. Device has breath detector and pulse rate detector, clamp having ability of fastening to frame of glasses, joint mounted onto clamp, unit in form of clip for placing light source and photo-resistor which both are parts of pulse rate detector, and pipe. Breath thermal detector is mounted at one end of pipe. The pipe is mounted in clamp for displacement to control position of breath detector in projection of jet of breath-out air. Pulse rate detector is connected with joint through flexible wires. Wires of thermal detector are placed inside pipe. Pulse rate detector and breath detector are connected with corresponding amplifiers through joint. Output of any amplifier is connected with commutator. |
Method of pulse-measuring evaluation of functional condition and character of vegetative regulation of human cardio-vascular system / 2268639 Method allows registering differential sphygmograms by means of computer and piezoelectric transducer providing high precision. Registration is carried out continuously and doesn't take much labor input. On the base of sphygmograms by using method of finding of "coding" points, two main characteristics of heart beat rate can be found by express analysis. Two main characteristics have to be rhythm and pulse oscillations of arterial pressure induced by periodical throwing of shock volume of blood into aorta. Algorithm of data processing which is developed on purpose, provides automatic placing of "coding" (received on the base of calculation) points onto averaged graph of cardiologic cycle that provides higher precision of determination of amplitude-time parameters at any recognized normal pulsation of selected fragment of pulsogram together with additional visual correction of localization of those points. Fragment of pulsogram with duration of no less than 2 minutes (standard duration equals to 5 minutes) is used for measuring and analyzing time factors which characterize rhythm of heart beating and its variability. After that the calibration factor is calculated to transfer conditional units of computer "digitization" into common units of measurement of blood arterial pressure (in mm of mercury column) and values of pulsation increase in blood arterial pressure in mm of mercury column are determined by integrating cardiologic cycles at selected fragment of pulsogram for corresponding areas. The meanings achieved are used for calculating all the amplitude-time cardiologic hemo-dynamic factors which depend on blood arterial pressure and which characterize systole of myocardium of left ventricle and elastic-resilient properties of walls of arterial channel. Continuous monitoring of changes in amplitude-time factors of pulsogram is provided as well as practically real time scale of getting of all the computational data and quick performance of all the mathematical transformations for making spectral analysis of variability of heart beat rate and selected amplitude-time cardiologic hemo-dynamic factors to determine their total and differential spectral power of oscillations. Results of static and spectral analysis of variability of measured parameters the functional condition and character of vegetative regulation of cardio-vascular system are estimated due to comparison of measured values with average statistical numerical values of the same factors which were specified for cardio-vascular system in relation to age, sex, state of health and signs for groups of people chosen as a test group. |
Four-electrode unit for reading cardio-respiratory parameters of biological object / 2269289 Device is used for measurement of volumetric parameters of breathing and electrocardiogram by methods of impedance pneumography and electrocardiography. Device is intended for physiological testing under natural conditions of life and activity of patient - at work, in sports, at home as well as at checking of natural conditions of maintenance and existence of animals. Device has two generator and two signal electrodes, stable ac generator and two filters. First filter is intended for selecting cardiographic signal and the second one - for selecting respiratory signal. Stable ac generator is made with symmetrical differential output. Two T-shaped units are introduced into circuit of connection of mentioned generator with generator electrodes. Two resistors, connected in series, of first and second T-shaped unit are connected to circuit of connection of first (second) generator electrode with output of generator. Passive member (resistor or inductance) of any T-shaped unit is connected between point of connection of two resistors from the unit and case of device. Four dischargers and two resistors are additionally introduced into four-electrode device. |
Method for evaluating transportability in severely affected patients / 2271142 One should determine ECG values, saturation (S), response of arterial pressure (AP) to inotropic support due to introducing dopamine (IS), microcirculation (M), central venous pressure (CVP), average arterial pressure (AvAP), hourly diuresis (D). In case of individual extrasystoles on ECG, C value being 91-90, IS being below 5 mcg kg/min, M being 2-3 sec, CVP being 4-6 cm watery column, AvAP 70 and more mm mercury column, D 30-40 ml/h each of these parameters should be evaluated as 0 points. In case of polytopic extrasystoles on ECG, at C value being 91-90 at FiO2 being below 0.5, IS 5-10 mcg kg/min, M being equal to 3-5 sec, CVP of 1-4 cm watery column, AvAP 60 and more mm mercury column, D 20-30 ml/h each of these parameters should be evaluated as 1 point. At combination of polytopic extrasystoles and myocardial ischemia on ECG, C value being 91-90 at FiO2 being above 0.5, IS above 10 mcg kg/min, M above 5 sec, CVP being below 0 or above 14 cm watery column, Av.AP 50 and more mm mercury column, D below 20 ml/h one should evaluate every value as 2 points. The values should be summarized and at total value ranged 0-6 severely affected patients should be considered as transportable people, at its value ranged 0-10 the preparation should be desired, at its value being 11 and more - it should be concluded upon nontransportability. The innovation enables to perform objective evaluation of severe state in affected patients. |
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English. |