RussianPatents.com

For multi-phase current (H02K17/12)

Low-noise energy-saving electric drive

Low-noise energy-saving electric drive

Low-noise energy-saving electric drive includes rotary electric machine with number of poles of 2p, equal to 4 or more, and control device. An asynchronous motor with combined winding is used as the machine. The control device comprises p controllers; at that one of them may be the master controller, while other ones may be slave controllers. Moreover each pair of poles is supplied with power from a separate controller.

Multiphase ac electric machine

Multiphase ac electric machine

Invention is referred to the area of electric engineering, and namely to multiphase AC electric machines, and may be used for household appliances when the usage of compact-sized electric machines with high power performance is required. The suggested multiphase AC electric machine comprises a rotor and a toothed stator with an m-phase winding, at which each coil covers one tooth and diametrically opposed coils of the same module phase are connected accordantly and the modularity of the stator winding is related to the number of the stator teeth by the following formula: Zs=2·m·M, where Zs is the number of the stator teeth, m is the quantity of phases, M=p=1, 2, 3 … up to a technologically reasonable value - the quantity of modules equal to the number of pole pairs, at that the rotation speed of the electric machine magnetic field is defined as Ω=2·π·f/M, where f is the frequency of the supply mains, M is the quantity of modules.

Frequency electric drive

Frequency electric drive

Frequency electric drive contains a three-phase electric motor the windings of which are connected in triangle and are connected to a voltage inverter. Poles of the inverter are connected to poles of the rectifier and filter designed as two series connected capacitors. The electric motor is fitted with leads from the middle of windings to which the terminals of the star connected three-phase capacitor battery are connected the zero point of which is connected to the middle point of series connected filter capacitors.

Terminal asynchronous electrical machine

Terminal asynchronous electrical machine

Proposed electric machine is characterised by forming winding of each stator out of concentric coils laid in one layer on the circle periphery of toroidal magnetic conductor in the A, C, B order. Rotor of split thickness consists of at least two discs separated by air gap and featuring slots for installation of common ferromagnetic inserts. Stators are positioned so that same phase coils of opposing stators are placed at three hundred sixty electrical degrees against each other.

Low noise induction motor

Low noise induction motor

Low noise induction motor comprises two mutually dependent combined windings, one of which is assembled as "star", and the second one - as "delta". These windings are laid into slots so that resulting vectors of induction of magnetic flows of pole pairs in identical phases of "star" and "delta" form an angle of 30 el. degrees between each other.

Three-phase asynchronous electric motor

Three-phase asynchronous electric motor

In three-phase asynchronous electric motor consisting of a stator including a housing, a hollow steel charged core attached from the inside to the housing and carrying the slots on inner cylindrical surface, and three-phase power winding laid in slots of charged core and made in the form of three single-phase windings with similar parameters and spatial shift of axes through 120 degrees, a rotor arranged inside the stator core with an air gap in relation to it, and end shields attached to the stator housing, in which the rotor shaft is installed, according to the invention, the stator includes an additional compensating three-phase winding laid into slots of the core and consisting of three single-phase windings with similar parameters, the axes of which are offset in space through 120 degrees; at that, additional compensating three-phase winding is isolated from three-phase power winding; its single-phase windings are connected to a star diagram, and phase beginnings are connected to capacitors connected to a triangle diagram, which are installed on the motor or beyond the motor.

Double frequency electrical machine

Double frequency electrical machine

Invention is aimed to enable electric energy transmission from a stationary source to a rotary receiver such as from a solar cell battery rotating round the space vehicle to such space vehicle as well as a rotary receiver drive. According to the invention, the double frequency electrical machine has two three-phase windings combined within a common stator core, the numbers of the windings pole pairs equal to p1 and p2; induced in the poles are EMPs with frequencies equal to f1 and f2 accordingly (f1<f2); there are terminals for connection of external electrical circuits; placed on the rotor is at least one phase winding having terminals for connection of external electrical circuits. Additionally, the double frequency electrical machine may have a rotor with magnetised poles or unmagnetised projections, their number equal to 2·p1.

Multi-phase bar wave winding of stator of asynchronous motor

Multi-phase bar wave winding of stator of asynchronous motor

Bar wave winding of stator of asynchronous motor is single-layer, and winding bars are solid; at that, height of bar hb, which is determined using the equations for damping factor kd and relative current displacement factor ξ, which are calculated at maximum frequency value f of supply voltage on condition that damping factor kd is at least by two times more than the value of the required control range of rotation frequency of asynchronous motor.

Low-speed asynchronous electric motor

Low-speed asynchronous electric motor

Low-speed asynchronous electric motor includes stator with multi-phase winding and rotor with interleaved core and short-circuited winding. Stator phases are made in the form of annular windings coaxial with rotor, each of which is located between two annular magnetic cores with teeth protruding in axial direction and which are opposite directed. At that, annular magnetic cores of the phase are offset relative to each other through π/z angle, and between them there arranged is toroidal magnetic core, and annular magnetic core of various phases are offset relative to each other through 2π/z·m angle, where z - the number of teeth of each annular magnetic core, and m - the number of phases.

Two-phase induction welding generator

Two-phase induction welding generator

Proposed invention can be used in hand-held electric arc welding devices. Induction welding generator has two-winding stator. Three-phase excitation winding 2 has terminals for excitation capacitors 3 to be connected thereto. Working winding 4 is a two-phase winding. Circuit of said winding each phase 4, 5, shifted through 90 degrees, incorporates compound capacitor 6, 7 and single-phase bridge rectifier 8, 9 shunted by shunting capacitors 10, 11. Output terminals of rectifiers 8, 9 are connected in parallel and welding electrode 12 is connected thereto.

Short-circuited rotor with squirrel cage of asynchronous machine

Short-circuited rotor with squirrel cage of asynchronous machine

Proposed short-circuited rotor with squirrel cage comprises shaft (1) and laminated core of sheet steel (2), in laminated core of sheet steel (2) there are rotor winding (3) rods located, which at both ends of laminated core of sheet steel (2) are pulled through openings (10) of each end plate (9) and closed by short-circuited ring (4), which, being electrically conducting, connects ends of rotor winding (3) rods on one side of short-circuited rotor to squirrel cage, besides each end plate (9) comprises circumferential ledge, which at least partially covers short-circuiting ring (4) with geometric closure at its outer side, besides each end plate (9) comprises part of rotor winding (3) rod and part of short-circuiting ring (4). At the same time, according to the present invention, end plates (9) are arranged as massive and are made of stronger material compared to rods of rotor winding (3) and short-circuiting rings (4), besides rods of rotor winding (3) have bulge at their ends with increased cross section of rod (7), moreover, at least part of rotor winding (3) rods bulge lies in openings (10) of end plates (9), besides transition between bulge and short-circuiting ring (4) is arranged in the form of rounding with transitional radius (8).

Double-winding stator with m=3-phase 2p<sub>1</sub>=6·k- and 2p<sub>2</sub>=8·k-pole lap windings in z=144·k slots

Double-winding stator with m=3-phase 2p1=6·k- and 2p2=8·k-pole lap windings in z=144·k slots

Present invention pertains to electric machine engineering. The invention seeks to simplify manufacturing and increase use of active materials, while reducing input of insulating materials and coefficient of differential scattering σd% m=3-phase 2p1=6·k- and 2p2=8·k- pole lap windings of a stator in z=144·k slots. The essence of the invention lies in that, the double-winding stator of an asynchronous motor has m=3-phase 2p1=6·k- and 2p2=8·k-pole lap windings in z=144·k slots, each of which is made symmetrical from m=6-zone from equally spaced coils, put into the slots in two layers. According to this invention: from K=z coils with numbers from 1K to (z)K, the 2p1 pole winding relates to K/2 coils with odd numbers 1K, 3K,…(z-1)K, containing wK1 turns and connected into 6p1 coil semi-groups with q'1=4 neighbouring coils in each. The 2p2 pole winding relates to K/2 coils with even numbers 2K, 4K,…,(z)K, containing wk2 turns and connected into 6p2 coil semi-groups with q'2=3 neighbouring coils in each. All coils have uneven spacing in the slots, equal to yk=19, or yk=21, where k=1, 2 given q'1=z/12p1 and q'2=z/12p2.

Double-winding stator with m=3-phase 2p<sub>1</sub>=12·k- and 2p<sub>2</sub>=14·k-pole lap windings in z=126·k slots

Double-winding stator with m=3-phase 2p1=12·k- and 2p2=14·k-pole lap windings in z=126·k slots

Present invention relates to electric machine engineering. The invention seeks to simplify manufacturing and increase use of active materials, while reducing input of insulating materials and coefficient of differential scattering σd% m=3 phase p1=12·k and 2p2=14·k - pole lap windings in z=126·k slots. The essence of the invention lies in that, for the double winding stator of an asynchronous motor with m=3 phase 2p1=12·k- and 2p2=14·k- pole lap windings in z=126·k slots, each of which is made symmetrical with an m=6-zone from equally spaced coils, put into slots in two layers: from K=z coils with numbers from 1K to (z)K, the 2p1 pole winding relates to K/2 coils with even numbers 1K, 3K,…, (z-1)K, containing wk1 turns and connected into 6p1 coil semi-groups, given q'1=7/4 and with grouping of their coils into a 2 2 2 1 row, which repeats nine times. The 2p2 pole winding relates to K/2 coils with even numbers 2K, 4K,…, (z)K, containing wk2 turns and connected, given q'2=3/2, into 6p2 alternating double- and single-coil semi-groups. The spacing of all coils in the slots equals yk=9, where k=1, 2 when q'1=z/12p1 and q'2=z/12p2.

Double-winding stator with c m=3-phase 2p<sub>1</sub>=8·k- and 2p<sub>2</sub>=10·k-pole lap windings in z=144·k slots

Double-winding stator with c m=3-phase 2p1=8·k- and 2p2=10·k-pole lap windings in z=144·k slots

Present invention pertains to electric machine engineering. The invention seeks to simplify manufacturing and increase use of active materials, while reducing input of insulating materials and coefficient of differential scattering σd% m=3-phase 2p1=8·k and 2p2=10·k - pole lap windings in z=144·k slots. The essence of the invention lies in that, for the double winding stator of an asynchronous motor with m=3 phase 2p1=8·k and 2p2=10·k-pole lap windings in z=144·k slots, each of which is made symmetrical with an m=6-zone from equally spaced coils, put into slots in two layers: from K=z coils with numbers from 1K to (z)K, the 2p1 pole winding relates to K/2 coils with odd numbers 1K, 3K,…, (z-1)K, containing wk1 turns and connected into 6p1 coil semi-groups with q'1=3 neighbouring coils in each. The 2p2 pole winding relates to K/2 coils with even numbers 2K, 4K,…,(z)K, containing wk2 turns and connected into 6p2 coil semi-groups given q'2=12/5, with grouping their coils in a 3 2 3 2 2 row, which repeats six times. The spacing of all coils in the slots equals yk=15, where k=1, 2 when q'1=z/12p1 and q'2=z/12p2.

Double-winding stator with m=3-phase 2p<sub>1</sub>=6·k- and 2p<sub>2</sub>=8·k-pole lap windings in z=72·k slots

Double-winding stator with m=3-phase 2p1=6·k- and 2p2=8·k-pole lap windings in z=72·k slots

Present invention relates to electric machine engineering. The invention seeks to simplify manufacture and increase use of active materials while reducing input of insulating materials and lowering coefficient of differential scattering σd% m=3-phase 2p1=6·k- and 2p2=8·k-pole lap windings of a stator with z=72·k slots. The essence of the invention lies in that, the double-winding stator of an asynchronous motor has m=3-phase 2p1=6·k- and 2p2=8·k-pole lap windings in z=72·k slots, each of which is made from m=6-zone from equally spaced coils, put into the slots in two layers. According to this invention: from K=z coils with numbers from 1K to (z)K, the 2p1 pole winding relates to K/2 coils with odd numbers 1K, 3K,…(z-1)K, containing wk1 turns and connected into 6p1 coil semi-groups with q'1=2 neighbouring coils in each. The 2p2 pole winding relates to K/2 coils with even numbers 2K, 4K,…,(z)K, containing wk2 turns and connected, given q'2=3/2, to 6p2 into alternating double- and single-coil semi-groups. All coils have spacing in the slots, equal to yk=9, where k=1, 2, 3; q'1=z/12p1 and q'2=z/12p2.

Double winding stator with m=3-phase 2p<sub>1</sub>=8·k- and 2р<sub>2</sub>=10·k-polar lap windings in z=96·k slots

Double winding stator with m=3-phase 2p1=8·k- and 2р2=10·k-polar lap windings in z=96·k slots

Present invention pertains to electric machine engineering. The invention seeks to simplify manufacturing and increase use of active material while reducing use of insulating materials and values of coefficient of differential scattering σd% m=3-phase 2p1=8·k and 2p2=10·k-polar lap windings of a stator with z=96-k slots. The essence of the invention lies in that, the double-winding stator of an asynchronous motor has m=3-phase 2p1=8·k- and 2p2=10·k- pole lap windings in z=96·k slots, each of which is made symmetrically from m'=6-zone from equally spaced coils, put into the slots in two layers. According to this invention: from K=z coils with numbers from 1K to (z)K, the 2p1 pole winding relates to K/2 coils with odd numbers 1K, 3K,…(z-1)K, containing wk1 turns and connected into 6p1 coil semi-groups with q'1=2 neighbouring coils in each. The 2p2 pole winding relates to K/2 coils with even numbers 2K, 4K,…,(z)K, containing wk2 turns and connected, given q'2=8/5, with grouping their coils in a 22121row, which repeats six times. The spacing of all coils in the slots equals yk=9, where k=1, 2 when q'1=z/12p1 and q'2=z/12p2.

Electromechanical core drilling assembly

Electromechanical core drilling assembly

Assembly contains power supply source with control system, submersible asynchronous three-phase electric motor, rotor of which is connected to core tube with crown, stator connected with top tube, and elastic element that is rigidly fixed with cable lock on one side and electric motor rotor on the other. Source of windings power supply is equipped with single-phase bridge rectifier, rotor of submersible asynchronous three-phase electric motor is made with one pair of explicit poles, and one phase stator winding is serially connected with bridge single-phase rectifier, to the outlet of which by direct current two other phase windings are connected by serially connected between each other ends, which form one pair of poles, with the possibility of rotor fixation with stator by elastic element in initial position, at which longitudinal axis of rotor symmetry coincides with longitudinal axis of symmetry of electromagnet field formed by two serially connected stator windings.

Asynchronous two-frequency generator

Asynchronous two-frequency generator

Asynchronous two-frequency electric machine contains short-circuited rotor and two three-phased windings combined in common core of stator with numbers of pole pairs p1 and p2, where EMF are induced at frequency f1 and f2 respectively, having clamps for connecting external electric circuits, including electric receivers, while in parallel to winding with number of pole pairs p2 a three-phased excitation capacitor is connected, also contains a motor as supply of mechanical power which rotates shaft of machine, and additional three-phased excitation capacitor, connected in parallel to winding with a number of pole pairs p1.

Motor-brake

Motor-brake

Stator and rotor contacting surfaces of motor-brake built around squirrel-cage induction motor are provided with taper thread; rotor shaft is supported on one end by radial bearing and on other one, by thrust bearing with spacer disk affording cohesion between stator and rotor threaded surfaces during reverse movement of rotor; shaft extension of the latter is splined.

Another patent 2551071.

© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.