IPC classes for russian patent Processing method of black-shale ores. RU patent 2493273. (RU 2493273):
Another patents in same IPC classes:
Processing method of black-shale ores with rare metals extracting / 2493272
Processing method of black-shale ores with rare metals extracting includes leaching of ore by sulphuric acid solution with dilution of rare metals. Leaching is performed in autoclave by sulphuric acid solution consisting of free and combined sulphuric acid with ratio of H2SO4(free):H2SO4(comb)=2:1, and containing 25-45 g/l of iron sulphate, 70-90 g/l of aluminium sulphate and 0.5 g/l of nitric acid. At that the process is performed under pressure in autoclave equal to 10-15 atm with mixing at temperature of 140-160°C in concentration range of general H2SO4(gen) equal to 350-450 g/l under pulp density S: L=1:0.7-0.9, preferably 1:0.8, under constant oxidation-reduction potential Eh in the system equal to 350-450 mV during 2-3 hours till residual concentration of free H2SO4(free) is within 45-75 g/l. |
Method of processing chemical concentrate of natural uranium / 2490348
Invention relates to the technology of processing chemical concentrates of natural uranium, involving leaching (dissolving) the concentrate and extracting uranium using tributyl phosphate in a hydrocarbon diluent. The method involves dissolving the concentrate using aqueous nitric acid solution, feeding the obtained aqueous uranyl nitrate solution to the extract outputting step of a stepped extraction unit and extracting uranium with tributyl phosphate in a hydrocarbon diluent. Extraction is carried out by counterflow interaction of the aqueous and organic phases. Concentrate containing thorium impurities in ratio of 1 wt % to uranium is used. During extraction at the extract outputting step, the step for saturating the extractant with uranium is kept at least 87% of the maximum saturation of the extractant with uranium, and a portion of the aqueous phase, which is not more than 60 vol. % of the uranyl nitrate solution fed to the extract outputting step, after one of the extraction steps is removed from the extraction process and fed for dissolving the uranium concentrate. |
Extraction method of natural uranium concentrate from sulphuric acid solutions of underground leaching, and plant for its implementation / 2489510
Method involves use of an unbalanced solution consisting of a solution from the washing process of anionite from the acid and filtrate from the filter press, and their removal from the process together with a mother solution from deposition of natural uranium concentrate through an additional saturation operation together with a marketable reclaimed product. For that purpose, the plant includes a local solution recirculation circuit in the form of a collector for solutions of unbalanced and mother concentrate from deposition, which is connected to pipelines of the above solutions and equipped with solution supply pipelines attaching the collector through a gravity tank to an additional saturation column from the marketable reclaimed product and to a solution return pipeline attaching the gravity tank to the solution collector of the local solution recirculation circuit. |
Method for extraction of uranium from ores / 2485193
Method involves leaching of uranium and iron using sulphuric acid solution and ferric iron contained in the ore as an oxidiser. After leaching is completed, uranium is extracted from the solution so that mother solution containing ferrous iron is obtained. Then, acidification of the mother solution is performed using sulphuric acid and recovery of ferric iron is performed by oxidation of ferrous iron so that a reusable solution is obtained, and recirculation of that solution for leaching of uranium is performed. Recovery of ferric iron is performed by action on the mother solution of high-voltage pulse electric discharges at high voltage pulse amplitude of not less than 10 kV and at pulse repetition cycle at the interval of 400÷1400 pulse/sec. At that, prior to action on mother solution with high-voltage pulse electric discharges, it is subject to dispersion. |
Method of uranium ore processing / 2481411
Proposed process comprises crushing and grinding the ore, sulfuric acid leaching with addition of nitrogen acid as an oxidiser. Then, uranium is extracted and cleaned of impurities with the help of extractive agents mix to wash saturated extractive agent with the solution of sulfuric acid. After extraction, uranium is re-extracted to obtain uranium concentrate by means of 8-10%-solution of sodium carbonate. Uranium is deposited from re-extracted product by hydrogen peroxide with 50-100%-surplus from stoichiometry at equilibrium pH 3.6-4.2, mixing interval of 1- 1.5 h and sedimentation time of, at least, 1 h. |
Method of extracting americium / 2477758
Invention relates to methods of extracting americium in form of americium dioxide from solutions. The invention can be used in the technology of extracting americium from production and radioactive wastes. The method involves concentrating nitric acid solution containing americium and impurities to americium content of not less than 100 mg/l by multi-step deposition of a precipitate containing americium, followed by dissolution thereof each time in a new portion of the starting solution. The precipitate containing americium is obtained from each portion of the solution by adding to 3.8-6.0 M nitric acid solution, which contains americium and impurities, ammonium hydroxide or an alkali metal hydroxide until achieving residual acidity of 0.1-0.2 M, oxalic acid to concentration of 10-50 g/l and adjusting acidity of the obtained reaction mixture to pH 0.6-2.3 if there are hydrolysable impurities in the starting solution and to pH 0.6-3.5 if not. The precipitate obtained by deposition from the americium-concentrated solution is then calcined and the calcined precipitate is then dissolved in nitric acid solution. Americium is then extracted from the obtained solution by a tributyl phosphate-based solid extractant, re-extracted, americium oxalate is deposited from the re-extract and then calcined to americium dioxide. |
Complex processing method of carbon-silicic black-shale ores / 2477327
Invention refers to complex processing method of carbon-silicic black-shale ores, which contain vanadium, uranium, molybdenum and rare-earth elements. The above method involves ore crushing to the particle size of not more than 0.2 mm and two leaching stages. Oxidation sulphuric-acid leaching is performed at atmospheric pressure. Autoclave oxidation sulphuric-acid leaching is performed at the temperature of 130-150°C in presence of oxygen-containing gas and addition of a substance forming nitrogen oxide, as a catalyst of oxygen oxidation. Ion-exchange sorption of uranium, molybdenum, vanadium and rare-earth elements is performed from the obtained product solution. |
Method of ion-exchange uranium extraction from sulfuric solutions and pulps / 2458164
Method includes uranium sorption by anion exchange resin, uranium de-sorption from saturated anion exchange resin by sulphuric acid and obtaining finished product from strippant. Note that uranium de-sorption from saturated anion exchange resin is done by sulphuric acid solution with concentration 70-100 g/l with the presence of 1-2 mole/l of ammonia sulphate. |
Method of producing uranium tetrafluoride / 2456243
Invention relates to chemical engineering of inorganic substances and can be used to produce uranium tetrafluoride. The method of producing uranium tetrafluoride involves reduction and fluorination of triuranium octoxide with vapour from decomposition of ammonium fluoride taken in excess of 100-130 mol. % of the stoichiometric amount at temperature in the range of 260-700°C. |
Procedure for processing uranium hexafluoride and device of implementing same / 2453620
Procedure for processing uranium hexafluoride involves supply of the main stream of gaseous uranium hexafluoride into uranium-fluorine plasma generator, supply of an additional flow of gaseous uranium hexafluoride into an additional circuit to the uranium-fluorine plasma generator, forming of a cluster of uranium-fluorine plasma out of the primary and secondary streams of uranium hexafluoride at the entrance to the uranium-fluorine plasma generator. Then uranium-fluorine plasma flow is formed in the separation chamber of the magnetic separator, removal of the neutral atomic fluorine from the uranium-fluorine plasma flow, condensation of uranium, collecting of molten metallic uranium, formation of a bar of metallic uranium and output of the formed uranium bar. The precession of a cluster of uranium-fluorine plasma is performed along a conical surface in the skin layer by means of magnetic and/or gas-dynamic scanning of additional flow of uranium hexafluoride. A device for implementation of the said procedure is also suggested. |
Processing method of black-shale ores with rare metals extracting / 2493272
Processing method of black-shale ores with rare metals extracting includes leaching of ore by sulphuric acid solution with dilution of rare metals. Leaching is performed in autoclave by sulphuric acid solution consisting of free and combined sulphuric acid with ratio of H2SO4(free):H2SO4(comb)=2:1, and containing 25-45 g/l of iron sulphate, 70-90 g/l of aluminium sulphate and 0.5 g/l of nitric acid. At that the process is performed under pressure in autoclave equal to 10-15 atm with mixing at temperature of 140-160°C in concentration range of general H2SO4(gen) equal to 350-450 g/l under pulp density S: L=1:0.7-0.9, preferably 1:0.8, under constant oxidation-reduction potential Eh in the system equal to 350-450 mV during 2-3 hours till residual concentration of free H2SO4(free) is within 45-75 g/l. |
Method of extracting rare-earth metals (rem) from phosphogypsum / 2492255
Proposed method comprises REM and phosphorus leeching by sulfuric acid solution to obtain leaching solution and insoluble residue. Said insoluble solution is processed by calcium compound to pH over 5. PEM concentrate is extracted from said solution by crystallisation and fed to REM and phosphorus leaching stage. Prior to leaching phosphogypsum is subjected to flushing with water to obtain flushing solution containing REM and phosphorus. Said insoluble residue is flushed before processing by calcium compound. Obtained flushing solution is processed by calcium compound to produce pulp with pH not over that of REM phosphate precipitation beginning and combied with said flushing solution. REM is sorbed by cation exchangers and separated to desorb REM therefrom to produce desorbent and recovered cation exchanger. Said recovered cation exchanger is sent to REM sorption while desorbent is sent to REM concentrate production stage. Phosphorus and associated impurities are deposited from sorption mother pulp. Obtained pulp is separated in residue to be recovered and water phase to be used as circulating water. |
Method of extracting rare-earth metals from phosphogypsum / 2491362
Method includes leaching of rare-earth metals (REM) from phosphogypsum with 1-5% solution of sulphuric acid, REM sorption from leaching solution with cationite, REM desorption, precipitation of REM concentrate from desorbate, obtaining REM concentrate and mother liquor, which is used for REM desorption. Cationite after desorption is returned at sorption stage. Phosphor and fluorine are precipitated from mother liquor, phosphor -and fluorine-containing sediment are filtered and filtrate is used as return water in leaching. REM leaching and sorption are carried out simultaneously. Obtained pulp is filtered through mesh filter with separation of saturated REM cationite. After that, pulp is filtered with obtaining non-dissoluble residue and mother liquor of sorption. Before desorption cationite is treated with part of desorbate. |
Method for quantitative determination of cerium in steels and alloys / 2491361
Method includes dissolution of a sample of analysed alloy and separation of cerium from the base of the alloy and macrocomponents. At the same time the base and macrocomponents are separated from cerium by serial deposition and extraction of the alloy base and macrocomponents of the alloy from the solution. Deposition is carried out with sodium diethyldithiocarbamate, extraction - with dithizone in chloroform. After separation of the organic phase, the cerium content is detected in water phase with the spectrometric method. |
Method of extracting rare-earth metals from phosphogypsum / 2487185
Invention is meant for extracting rare-earth metals from phosphogypsum obtained in production of phosphorus fertiliser during sulphuric acid treatment of apatite. The method of extracting rare-earth metals from phosphogypsum involves converting phosphogypsum, dissolving the converted chalk to obtain an insoluble residue containing rare-earth metals. The obtained insoluble residue containing rare-earth metals is dissolved in nitric acid solution at solid-to-liquid ratio of 1:1.5 to obtain a solution and an insoluble residue. The insoluble residue is then washed with water; the obtained solution is mixed with the washing solution; the mixed solution is neutralised to acidity of 0.5-0.25 N with concentrated aqueous ammonia solution and taken for precipitation of rare-earth metal oxalates. The oxalates are precipitated with saturated oxalic acid solution; the residue is washed with 1.5-2.5% oxalic acid solution at solid-to-liquid ratio of 1:2-3. The oxalates are then dried and calcined until rare-earth metal oxides are obtained. |
Solid extractant for extraction of scandium and method of its production / 2487184
Solid extractant is proposed (SEX) for extraction of scandium from scandium-containing solutions, containing a styrene divinyl benzene matrix with di-(2-ethyl hexyl)phosphoric acid. At the same time it additionally contains dibenzo-18-crown-6 at the following ratio of components, wt %: di-(2-ethyl hexyl)phosphoric acid 28-30, dibenzo-18-crown-6 28-30, styrene divinyl benzene - balance, besides, the ratio of styrene and divinyl benzene in the matrix is equal to 65÷70:30÷35. There is a method also suggested for production of the above extractant. |
Method of extracting scandium / 2485049
Invention relates to hydrometallurgical processing of mineral material, particularly scandium-containing "tailings" obtained during beneficiation of titanium-magnetite ore by wet magnetic separation. The method of extracting scandium is three-step sulphuric acid leaching of scandium, wherein at the first step, leaching is carried out with recycled solution after extraction of scandium at temperature of 30-50°C and solid to liquid ratio of 1:6-7 for 3-4 hours; the pulp is then divided into a solid phase and a liquid phase; at the second step, a portion of the solution obtained from the first step is returned to the solid phase and sulphuric acid is added to concentration of 340-360 g/l and sodium fluoride is added in amount of 20-25 kg fluorine/t solid; leaching is carried out at temperature of 95-98°C and solid to liquid ratio of 1:2.5-3 for 3-4 hours; further, at the third step, the pulp is diluted in solid to liquid ratio of 1:6.5-7.5; treatment is carried out at temperature of 95-98°C for 3-4 hours. |
Method of producing scandium-bearing concentrate from red mud / 2484164
Proposed method comprises sulfuric acid leaching of scandium from red mud, pulp filtration, scandium sorption from sulfuric acid solutions, desorption from organic phase by carbonate solution to obtain column effluent. Then, scandium poorly soluble compounds are precipitated from column effluent, precipitate is filtered out, flushed, dried and annealed to get scandium-bearing concentrate. Note here that said leaching is performed by 10.0-13.5%-sulfuric acid at pulp initial vibration cavitation at rotary velocity of 35-60 m/s for 15-35 min. Scandium is precipitated from column effluent by potassium caprinate in amount of 75-100 g/t of scandium at pH 3.5-4.5 and exposure for 15-25 min. |
Method of extracting rare-earth metals from aqueous solutions / 2484163
Proposed method comprises extraction of rare-earth metal cations by organic phase including extragent solution in inert diluter. Naphthenic acid is used as said extragent. Kerosene is used as inert diluter. Extraction is conducted in three stages at relationship between organic and aqueous phases O:A=1·(9-11) at every stage. Note here that, at first stage, europium cations (III) are extracted at content of naphthenic acid in kerosene of 10-13 vol. % and aqueous solution pH 5.0-5.1. At second stage, samarium cations (III) are extracted at content of naphthenic acid in kerosene of 13-16 vol. % and aqueous solution pH 4.6-4.7. At third stage cerium and lanthanum cations (III) are extracted at the same content of extragent and pH 5.0-5.1. |
Method of extracting rare-earth metals from technological and productive solutions and pulps / 2484162
Method of extracting rare-earth metals from solutions containing iron (III) and aluminium comprises sorption of rare-earth metals on sorbent. Ampholyte with iminodiacetic functional groups is used as said sorbent. Sorption is carried out after preliminary neutralisation or acidification of solution to pH 4-5 by whatever alkaline or acid agent to add ampholyte in obtained pulp with separation of solid fraction. Sorption is conducted at ampholyte:pulp ratio of 1:50-1:150, phase contact time of 3-6 h and in the presence of reducing agent. |
Processing method of black-shale ores with rare metals extracting / 2493272
Processing method of black-shale ores with rare metals extracting includes leaching of ore by sulphuric acid solution with dilution of rare metals. Leaching is performed in autoclave by sulphuric acid solution consisting of free and combined sulphuric acid with ratio of H2SO4(free):H2SO4(comb)=2:1, and containing 25-45 g/l of iron sulphate, 70-90 g/l of aluminium sulphate and 0.5 g/l of nitric acid. At that the process is performed under pressure in autoclave equal to 10-15 atm with mixing at temperature of 140-160°C in concentration range of general H2SO4(gen) equal to 350-450 g/l under pulp density S: L=1:0.7-0.9, preferably 1:0.8, under constant oxidation-reduction potential Eh in the system equal to 350-450 mV during 2-3 hours till residual concentration of free H2SO4(free) is within 45-75 g/l. |
|
FIELD: metallurgy.
SUBSTANCE: processing method of black-shale ores includes crushing, counterflow two-stage leaching by sulfuric acid solution upon heating, separation of pulps formed after leaching at both stages by filtration. Then valuable soluble materials are washed from deposit at the second stage with strengthened and washing solutions being produced, marketable filtrate is clarified at the first stage for its further processing. Ore is crushed till the size of 0.2 mm, leaching at the first stage is performed by cycling acid solution with vanadium under atmospheric pressure, temperature of 65-95°C during 2-3 hours, till residual content of free sulphuric acid is equal to 5-15 g/l. Leaching at the second stage is performed at sulphuric acid rate of 9-12% from the quantity of initial hard material under pressure of 10-15 atm and temperature of 140-160°C during 2-3 hours. Cake filtered after the first stage is unpulped by part of strengthened solution which content is specified within 35-45% of total quantity.
EFFECT: high-efficiency extraction of rich components, possibility of pulps separation by filtration after leaching with high properties thus reducing costs for separation processes.
3 cl, 1 dwg, 1 tbl
The invention relates to the field of extraction of valuable substances - aluminium, vanadium, uranium, molybdenum and rare-earth metals from ores of black schist Kazakhstan. Nizhne-Cambrian carbon-siliceous rock known as the black shales, stretching more than 2 thousand kilometers from North to South Kazakhstan in the form of two arcs from Ishim Luke to Zailiyskiy Alatau, which are characterized by abnormally high content of vanadium, uranium, molybdenum, rare earth elements and have no analogues in the world.
Known combined method of leaching of ore components, including leaching treated using a twostage valuable components, in which the first stage of leaching is performed at atmospheric pressure, and the second stage of leaching is conducted under high pressure in an autoclave (patent RU №2398901, publ. 10.09.10, IPC 22 3/08, 22 23/00).
Drawback of this method consists in that it is characterized by a low efficiency of extraction of valuable substances from ores, as takes place in conditions of direct-flow motion of interacting phases.
Closest in its technical nature and the achieved effect to the proposed is method for processing of cobalt-rich ferromanganese crust formations, which includes the operations of crushing of initial raw material size up to 90% - 0.074 mm, treated using a twostage leaching of valuable components (cobalt, Nickel, manganese and copper) a solution of sulphuric acid in the atmosphere pressure, separation formed after leaching pulps on both stages of filtration to produce commodity filtrate for further processing (patent RU №2261923, . 10.10.05, IPC 22 3/08, 22 4/00).
Drawback of this method is that when using it due to the relatively «soft» conditions leaching at atmospheric pressure is not ensured high extraction of valuable components and primarily vanadium. The defect consists in the fact that after the processes of leaching of valuable components from the black schist ores in both phases are formed pulp, with poor performance, which increases the cost of organizing the separation of the processes of filtration.
The technical result the invention is a high-efficiency extraction of valuable components - of aluminium, vanadium, uranium, molybdenum, rare-earth metals from ores of black schist, as well as the possibility of separation of slurries filtration after leaching with high-performance, reducing separation processes.
The technical result is achieved in the method for processing ores of black schist, which includes grinding the ore size up to 0,2 mm, treated using a twostage sulfuric acid leaching solution when heated, the division generated after leaching pulps on both stages of filtration, washing sediment second stage of leaching of soluble substances of valuable components from receiving fortified and first of leaching solutions, control clarification of commodity filter on the first stage of leaching and its processing for the extraction of valuable components, while leaching at the first stage spend working sulfuric acid solution in the form of a fortified solution and part of the washing solution at atmospheric pressure, temperature 85-95°C to residual content of free sulphuric acid, 5-15 g/l for 2-3 hours, and leaching at the second stage of lead consumption sulfuric acid 9-12% of the original solid under pressure 10-15 ATM, temperature 140-160°C for 2-3 hours, filtered after the first stage of KEK part of a fortified solution, which value is set within 35-45% from its total amount.
In addition to the order filter on both stages the use of the additive flocculants two types - of nonionic and cationic, pulp after the second stage of leaching before being filtered diluted first by means of leaching solution to the ratio W:T=1.4-1.6:1, and the pulp after the first stage before filtering thickened with nonionic additives and cationic to the ratio W:T=1.4-1.6:1.
|