RussianPatents.com
|
Composition of bath for chemical-thermal treatment of friction surfaces of steel items. RU patent 2436867. |
|
FIELD: metallurgy. SUBSTANCE: composition of bath has following ratio of components, wt %: water 38.0-40.0, caustic soda 40.0-43.0, sulphide soda 1.5-2.5, hypo-sulphurous soda 2.0-3.0, sulphurous titanium 7.0-8.0, copper sulphide 2.5-3.5, potassium 3.0-4.0. EFFECT: raised anti-friction properties and hardness of processed items. 1 tbl
|
Heat resistant component / 2436866 Heat resistant component contains main part of TiAl of inter-metallic compound having friction surface rubbing against another component and resistant to abrasion coating. Coating is applied on friction surface and is formed by sedimentation in discharge of material of a consumable electrode of metal resistant to abrasion. |
Procedure for production of built-up coating on blade body of turbo-machine / 2434973 Strips of alloyed metals are built-up in direction of lengthwise generatrix of blade body ensuring gaps between built-up strips at least on part of blade body and forming layer. As built-up metal there are used alloys on base of nickel with Co, Cr, Al, Mo, W, Ti, Y or their combination. Further, a blade body is mechanically processed ensuring its specified geometry. Successive thermal treatment corresponds to thermo-cycling. |
Method of applying cermet coat slurry on turbine stator inner surface / 2433208 Slurry is applied by pouring into stator inner cavity through inlet branch pipe in amount sufficient for complete immersion of guide naves in slurry. Inlet branch pipe is sealed to turn turbine stator about its axis through angle at which inlet branch pipe stays at its bottom position. Then, turbine stator is turned clockwise about axis perpendicular to its axis through angle of inclination to horizon at which slurry does not flows out of turbine stator with inlet branch pipe and guide vanes unsealed. Thereafter, turbine stator is turned about said axis counter clockwise to drain slurry. Now with slurry drained, turbine stator is rotated about its axis with turbine in horizontal position, unless slurry layer water glare disappears. |
Method to create surface using discharge / 2432419 Pulse discharge is created between an end surface of an electrode (37) and an end part of a metal plate (11), in order to cause the electrode (37) wear and form a groove (41) in its end surface, shape of which complies with the shape of the end part of the metal plate (11). The relative displacement of the electrode (37) is done in direction perpendicular to the side of the metal plate (11). A pulse discharge is created between the inner side surface of the groove (41) of the electrode (37) and the side surface (11b, 11c) of the end part of the metal plate (11), in order to create an auxiliary coating (43) or (45) at the side (11b, 11c) of the end part of the metal plate (11), and a pulse discharge is created between the lower surface of the groove (41) of the electrode (37) and the upper surface of the end part of the metal plate (11), in order to form a plating layer (47) on the end part of the metal plate (11). |
Method of functionalising titanium metal surfaces with titanium nanoparticles and product functionalised using said method / 2432182 Invention relates to treatment of the surface of a titanium article for orthodontic application, used in form of a prosthetic device or component thereof. The method involves immersing the article to be treated in a suspension containing titanium dioxide nanoparticles while ensuring complete wetting of the article, heating the article in order to remove the solvent and performing a thermal cycle in order to fix the nanoparticles on the treated surface of the article. |
Procedure for treatment of cutting tool in stationary combined discharge of low temperature plasma of low pressure / 2428521 Tool is positioned in chamber which is vacuumised and is supplied with process gas to working pressure (P). At this pressure there is possible gas break down at minimal strength of electro-magnetic field. Further, positive voltage of bias (U) is supplied on the tool forming electrostatic field around the tool sufficient for maintaining stable generation of plasma and there is generated micro-wave energy to a level of super-high frequency - SHF of power (W) 10-90 Wt. Cutting edges of the tool are subjected to plasma during 1.5-17 minutes (tpr), further, the tool is cooled. Also, during treatment process there is performed control over bias current (I) occurring in a measuring circuit at plasma generation chosen from the range 2÷17 mcA and final lag temperature (T) chosen from the range 10÷230°C. At deviation from the allowed value of bias current (I) the mode of treatment is normalised by changing anode current of a magnetron (Ian). At exceeding the allowed value of final lag temperature (T) treatment of the tool is terminated earlier. |
Procedure for production of surface nano composite layer on parts of metal or alloys / 2428520 Layer of nano composite structure containing silicon oxide dissolved in litol is applied on parts of metals or alloys. Further, the layer is radiated with electro-magnetic field of high frequency f=3÷5 MHz during specified interval of time t=5-15 seconds chosen depending on geometric dimension of parts. Owing "to skin-effect" the surface layer of treated part is heated to temperature within the range from 700° to 900°C. Dislocations of the surface layer are blocked with positive ions of heavy metals by the method of electro-mechanic implantation when direct electric current is transmitted through the contact a part-implanted strengthening metal. |
Method of combined machining of parts / 2423219 Invention relates to machine building, particularly, to physicochemical hardening of parts. First, part surface is conditioned by turning to remove 200 mcm of surface layer, not larger, to produce clean juvenile surface and reduce strain hardening of part surface. Second, simultaneously, part surface is hardened and plastic metal layer is applied thereon by deforming ball containing copper whereon working fluid is forced. Said working fluid contains chemical copper compounds to initiate selective transfer in contact between said deforming ball and parts surface via aforesaid surface layer. Turning element and deforming ball are located in tangential plane at distance that allows minimum interval of contact between juvenile surface and ambient medium before application of plastic metal layer. |
Gradient functional coating on transparent substrate / 2422556 Gradient functional coating on transparent substrate consists of first layer of transparent dielectric out of mixture of oxide and nitride of aluminium of 5-40 nm thickness, of layer of copper with thickness 9-14 nm and of external layer of transparent dielectric out of mixture of oxide and nitride of aluminium of 30-45 nm thickness with refractive index diminishing in direction from layer of metal obtained by increased percent content of aluminium oxide in said direction. Transparent layers of dielectric correspond to products of chemical reaction formed at target vacuum sputtering containing aluminium in chemically active gas containing oxygen and nitrogen. The external layer of transparent dielectric is produced with change of partial pressure of oxygen from 0.006 to 0.020 Pa. |
Procedure for forming combined mineral surface layer on metal parts protecting them from effect of corrosive mediums and with specified tribotechnical characteristics / 2421548 Procedure consists in selection of material for coating by value of specific volume energy of plastic deformation considering pressure in friction pair. Further, chosen material with specified values of wear intensity is subjected to plastic deformation of surface under a selected preset mode. Strength characteristics of material of part surface are preliminary analysed. There is selected material of coating depending on a value of coefficient of wetting material of part surface with the most corrosive to surface medium. Wetting coefficient should be within the ranges 0.2-0.9. Successively, there is formed coating of 50 mcm thickness out of chosen material on surface of a part. A required mode of plastic deformation of this material is selected and carried out depending on an optimal value of modulus of deformation resistance of surface layer of parts. |
Method for coating of superabrasive with metal / 2247794 Method involves using coating forming metal powder including compound; providing thermal reduction of metal from compound by placing superabrasive particles and powder adapted for forming of coating together into inert atmosphere; heating superabrasive particles and said powder to temperature of from at least 5000C to temperature below superabrasive destruction temperature during time interval sufficient for effective deposition of metal layer onto at least one portion of surface of each superabrasive particle and providing chemical bonding between said particles and said powder; cooling said particles and said powder to temperature below temperature of reaction between superabrasive particles and powder; separating mixture for obtaining of product fraction in the form of superabrasive particles coated with metal and substantially free from coating forming powder and by-product fraction in the form of coating forming powder substantially free from superabrasive particles coated with metal. Described are superabrasive particles coated with metal by means of said method, method for manufacture of abrasive tool with the use of superabrasive particles coated with metal, abrasive tool comprising said particles, and plated product comprising constructional diamond part and equipped with metal layer chemically bonded with at least one portion of surface of said constructive part. |
Method of making thin hardly soluble coats (versions) / 2250932 Proposed method includes preparation of ceramic or oxide layers on substrates; after application and drying of initial substance, gassing with wet gas-reactant is performed for conversion into respective hydroxide or complex layer. Then heat treatment is performed for forming ceramic or oxide layer. For alternative making of other chalco-genide layers at increased conversion of substance, additional gassing is performed by means of chalcogen-oxygen containing gas-reactant. Metal layers may be obtained as alternative by means of reducing gas-reactant. |
Method of working surfaces of units and assemblies of thermal engines / 2253696 Method comprises supplying preliminary prepared fluid into the working zone. The fluid comprises hydrocarbon agent, preliminary disintegrated mineral powder, and catalyzer. The mineral powder is made of an activated basalt of 5 μm dispersity. The catalyzer is made of alcohols. |
Method of finish anti-friction treatment / 2256725 Friction surface is degreased, dried and technological medium is applied to it by means of brush, for example. Brass rod is fitted at angle of 45-60 deg. relative to surface being treated. When rod is pressed at simultaneous switching-on of electric machine, it forms shocks over surface being treated; energy of shock is equal to 0.5-0.7 J. |
Method of friction brassing of friction surfaces / 2258096 Proposed method includes degreasing, application of technological fluid and friction brassing. Prior to friction brassing, friction surfaces are subjected to abrasive jet treatment at total rate of abrasive flow of 0.06 to 0.07 g/mm2. As a result, obtaining of copper-containing film on friction surfaces is guaranteed at Ra≤0.04 mcm. |
Method of application of coating by surface welding of solder on structural steel surface / 2260503 Invention can be used for application of wear resistant coating onto working surfaces of cutting tools, for instance, abrasive coating into surface of milling cutter. Surface to be treated is milled and degreased with organic solvent. Prior to application of solder, flux is applied in layers. Used as flux is saturated water solution of mixture of boric acid, 30%, and sodium tetraborate, 70%. In process of application, flux is head to 300-350°C to completely evaporate water and form solid layer of flux on surface of steel and subsequent porous layer of flux. Solder is applied to flux coated surface of steel with simultaneous delivery of flux of preliminarily dehydrate mixture of boric acid, 30% and sodium tetraborate, 70%, to zone of welding with provision of filling of pores in coating with molten flux. Coating is composite material containing metal solder, particles of hard alloy and glass solder. Glass solder, as viscous component, restrains grows and development of cracks formed in operation of cutting tool. |
Thread cutting tools strengthening method with use of electric spark alloying / 2264895 Method comprises steps of applying wear resistant coating onto cutting surface of tool with use of electric spark alloying process; placing tool in special fitting such as master-templates and radiators made of high temperature-conducting materials; applying coating on the whole length of front cutting surface in the form of stripe with width H = (2.0 - 2.5)h from line of thread profile apexes (h - height of thread profile) and with thickness of layer 35 - 70 micrometers while providing increased heat sink from apexes of threaded cutting profiles. Special fitting is made of copper. |
Method of passivation of contact surface of refractory reservoir made from mullite and slip used for realization of this method / 2266880 Proposed method includes application of slip on contact surface; slip contains 50-70 mass-% of aluminum oxide powder Al2O3 and 30-50 mass-% of binder which contains 50-60 mass-% of aluminum chloride AlCl3 dissolved in 40-50 mass-% of water. Then reservoir is dried and roasted in oxidizing atmosphere at temperature of 1450-15500°C for at least 20 min. In some cases, use is made of slip containing water-soluble organic dye. Used as organic dye is methylene blue at total content of 0.1-0.5 mass-%. Specification gives description of slip used for passivation of contact surface of refractory reservoir. Proposed method makes it possible to form absolutely inert coat on contact surfaces of ceramic reservoirs relative to alloys of titanium coat. |
Compound for forming layer on friction metal surfaces / 2266979 Proposed method includes forming of layer possessing self-restoration effect in the course of operation, high tribotechnical characteristics, enhanced wear resistance and corrosion resistance in compound containing finely-dispersed base in form of mixture and catalyst; used as finely-dispersed base are natural nickel-iron-magnesian hydrosilicates and used as catalyst is mineral of olivine group: forsterite or fatalite at the following ratio of components, mass-%: nickel-iron-magnesian hydrosilicates, 90-95; catalyst, 5-10; size of grains of base and catalyst are similar, they range from 1 mcm to 100 mcm. |
Method for improving wear resistance of worn parts of steel and cast iron and for restoring such parts / 2271913 Method is realized by applying at least one coating by means of electric spark alloying. Wear resistance coating is applied with use of electrode of boron alloyed intermetallide Ni3Al containing, mass %: Al, 2 - 15; B, 0.02 - 02; Ni, the balance. In variants of invention electrode contains in addition dispersed particles of Si3 N4. Before applying on part layer of wear resistant coating, nickel layer with thickness 20 - 50 micrometers is applied as intermediate adhesion barrier. Coated parts are subjected to mechanical working. Restoration is realized for parts with wear degree up to 100 micrometers or with wear degree 100 - 300 micrometers. |
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English. |