RussianPatents.com

Converter. RU patent 2396665.

Converter. RU patent 2396665.

FIELD: electricity.

SUBSTANCE: converter designed for conversion of alternating voltage to direct voltage and vice versa in the converting station included in high voltage supply system includes in-series connection of many valves (10-13) of converter. Connections to transformers in the above converter are located on both of two opposite sides of the above converter valves.

EFFECT: improving reliability.

18 cl, 5 dwg

 


 

IPC classes for russian patent Converter. RU patent 2396665. (RU 2396665):

H02J3/36 - Arrangements for transfer of electric power between ac networks ; via a high-tension dc link
Another patents in same IPC classes:
Converting substation Converting substation / 2396664
Converting substation for connection of alternating current system to bipolar HVDC supply line of electric power has setting of DC neutral made with the first DC switches allowing to break the first current circuit between neutral bus (111) of one conductor (104) of the above electric power supply line and neutral bus of other conductor (105) at bipolar mode of substation for insulation of failed sector and for switching over to unipolar mode/reverse travel. Setting of DC neutral has at least two first DC switches (133, 136 and 134, 137) on the above first current circuit, which are in-series connected and provided with possibility of functioning as reserve for each other in case some of them will not be able to break the first current circuit for insulation of failed sector owing to switching over from bipolar to unipolar mode.
Dc high-voltage power transmission device Dc high-voltage power transmission device / 2381606
Proposed device (1) comprises power supply terminal (4) to connect AC power supply circuit (2) and consumer terminal (5) to connect multi-phase consumer (3). Note here that rectifier (6) is connected behind terminal (4). The latter is connected, via intermediate DC circuit (8) comprising smoothing device (12) with inverter (9) connected, on the AC side, to aforesaid consumer connection terminal (5). Note also that rectifier (6) and inverter (9) comprise thyristor gates (9a+, 9b+, 9C+; 9a-, 9b-, 9c-), while control unit (14) triggers thyristor gates (9a+, 9b+, 9c+; 9a-, 9b-, 9c-.) of inverter (9) depending upon timed signal. Control unit (14) is connected to timed pulse generator-transducer that enjoys independent power supply. Capacitative-type apparent resistances (13) are connected to inverter (9) to switch current in direction of power flow, or aforesaid multi-phase consumer (3) has apparent resistance of said capacitative type sufficient to switch current.
Converting substation Converting substation / 2376694
Invention is used in electric engineering. Converting substation for power plant system connecting to bipolar HVDC transmission line has DC neutral plant ensured with the first DC switches (131, 132) allowing for disconnecting the first current circuit between neutral bus (112) of the first conductor (105) and a neutral bus (111) of the other conductor (104) when substation operates in bipolar mode and switching to single-polar mode of operation, if needed. In order to isolate faulty section in system, current circuit with connecting elements (142, 143) of electrode line to direct current from the said conductor (105) to another one, there are split connection elements (142, 143) available for each electrode line (191, 192). There is a special device to connect each neutral bus to one selected connecting elements of electrode line.
Reduction of multi-version energy generation prime cost by using currently most profitable version of production Reduction of multi-version energy generation prime cost by using currently most profitable version of production / 2376693
Invention relates to electric engineering and may be used for supplying power to consumers. Prime cost of multi-version energy production is reduced by power supplying facilities and electricity co-generation (conversion of thermal wastes into electric energy and heating) at consumers' point. This method allows for consumer to select one or more types of primary energy from a variety of available energy sources in order to reduce cumulative capital and operational costs and satisfy needs in the own loading. According to the invention, the most profitable current possibilities of energy saving and/or possibilities of money earning by energy exporting to power grid are taken into account. These are the cases when market prices are high and/or it is possible to profit from paying to support grid or provide auxiliary services, is there are any. To support operation requiring high level of reliability, operation without additional costs for redundant lines of power supply connection and expensive backup means of power generation can be ensured at consumer's place.
Method and device for improvement of alternating currant power transmission system dispatching capabilities, system stability and power flow controllability using direct currant power transmission system Method and device for improvement of alternating currant power transmission system dispatching capabilities, system stability and power flow controllability using direct currant power transmission system / 2343614
Invention is related to electric engineering and can be used to operate at joint centres of electric power consumption for instance for large municipal areas or geographical regions. In the method and the device for improvement of alternating currant power transmission system dispatching capabilities, electric power transmission system provides isolation of local alternating currant power supply system from surrounding alternating current system, and local centre of alternating current power consumption has multiple local alternating current loads and distributing system feeding line that supplies multiple local alternating current loads. Additionally there is at least one remote power station or other electric power source to deliver alternating current electric power to local centre of alternating current power consumption. To isolate alternating current electric power received from remote power station from local centre of alternating current power consumption by converting alternating current electric power into direct current electric power, full or partial ring of direct current power lines are created between local centre of alternating current power consumption and remote power station. Then the second conversion of direct current electric power into alternating direct current electric power is performed on the basis of demands in electric load. Feeding line of distributing system delivers alternating current electric power from remote power station providing isolation of all local alternating current loads.
System for utilization of coal power by means of super-conductive electric energy transfer System for utilization of coal power by means of super-conductive electric energy transfer / 2316874
Device contains means for generating thermal electric energy for transformation of coal energy in coal deposit, positioned at location which is remote from end consumer, into electric energy by generating thermal electric energy near the coal deposit, alternating current load at end consumer, network for transmission/distribution of alternating current and means for transferring electric energy for transferring electric energy from device for generating thermal electric energy near the coal deposit to transmission/distribution network. Electric energy transmission device consists of a combination of super-conductive constant current electric energy transmission system with low losses during transmission with usage of super-conductive power cable and conventional transmission/distribution network with normal temperature.
Heavy-power multiphase converter substation Heavy-power multiphase converter substation / 2260234
Proposed substation characterized in high reliability at its equivalent rectifying phase characteristic equal to 48, 60, 72, or 96 has each of its n converters incorporating converter transformer and rectifier. All converter transformers are connected to high-voltage supply mains. Converters are available in m design alternates distinguished by absolute angle of phase shift between primary line and phase voltages of converter transformers and have 2k relatively parallel dc busways. Converters are disposed along dc busways and all rectifiers are electrically connected to these busways. Converters incorporating converter transformers having maximal absolute angle of phase shift are disposed in extreme positions and those whose converter transformers have minimal absolute angle of phase shift are arranged in middle part of multiphase converter substation, where n is number of converters, 4 ≤ n ≤ 10; 2k is number of positive and negative dc busways, 2 ≤ 2k ≤ 64; m is number of converter design alternates distinguished by absolute angle of phase shift of converter transformers.
Heavy-power multiphase converter substation Heavy-power multiphase converter substation / 2260234
Proposed substation characterized in high reliability at its equivalent rectifying phase characteristic equal to 48, 60, 72, or 96 has each of its n converters incorporating converter transformer and rectifier. All converter transformers are connected to high-voltage supply mains. Converters are available in m design alternates distinguished by absolute angle of phase shift between primary line and phase voltages of converter transformers and have 2k relatively parallel dc busways. Converters are disposed along dc busways and all rectifiers are electrically connected to these busways. Converters incorporating converter transformers having maximal absolute angle of phase shift are disposed in extreme positions and those whose converter transformers have minimal absolute angle of phase shift are arranged in middle part of multiphase converter substation, where n is number of converters, 4 ≤ n ≤ 10; 2k is number of positive and negative dc busways, 2 ≤ 2k ≤ 64; m is number of converter design alternates distinguished by absolute angle of phase shift of converter transformers.
System for utilization of coal power by means of super-conductive electric energy transfer System for utilization of coal power by means of super-conductive electric energy transfer / 2316874
Device contains means for generating thermal electric energy for transformation of coal energy in coal deposit, positioned at location which is remote from end consumer, into electric energy by generating thermal electric energy near the coal deposit, alternating current load at end consumer, network for transmission/distribution of alternating current and means for transferring electric energy for transferring electric energy from device for generating thermal electric energy near the coal deposit to transmission/distribution network. Electric energy transmission device consists of a combination of super-conductive constant current electric energy transmission system with low losses during transmission with usage of super-conductive power cable and conventional transmission/distribution network with normal temperature.
Method and device for improvement of alternating currant power transmission system dispatching capabilities, system stability and power flow controllability using direct currant power transmission system Method and device for improvement of alternating currant power transmission system dispatching capabilities, system stability and power flow controllability using direct currant power transmission system / 2343614
Invention is related to electric engineering and can be used to operate at joint centres of electric power consumption for instance for large municipal areas or geographical regions. In the method and the device for improvement of alternating currant power transmission system dispatching capabilities, electric power transmission system provides isolation of local alternating currant power supply system from surrounding alternating current system, and local centre of alternating current power consumption has multiple local alternating current loads and distributing system feeding line that supplies multiple local alternating current loads. Additionally there is at least one remote power station or other electric power source to deliver alternating current electric power to local centre of alternating current power consumption. To isolate alternating current electric power received from remote power station from local centre of alternating current power consumption by converting alternating current electric power into direct current electric power, full or partial ring of direct current power lines are created between local centre of alternating current power consumption and remote power station. Then the second conversion of direct current electric power into alternating direct current electric power is performed on the basis of demands in electric load. Feeding line of distributing system delivers alternating current electric power from remote power station providing isolation of all local alternating current loads.
Reduction of multi-version energy generation prime cost by using currently most profitable version of production Reduction of multi-version energy generation prime cost by using currently most profitable version of production / 2376693
Invention relates to electric engineering and may be used for supplying power to consumers. Prime cost of multi-version energy production is reduced by power supplying facilities and electricity co-generation (conversion of thermal wastes into electric energy and heating) at consumers' point. This method allows for consumer to select one or more types of primary energy from a variety of available energy sources in order to reduce cumulative capital and operational costs and satisfy needs in the own loading. According to the invention, the most profitable current possibilities of energy saving and/or possibilities of money earning by energy exporting to power grid are taken into account. These are the cases when market prices are high and/or it is possible to profit from paying to support grid or provide auxiliary services, is there are any. To support operation requiring high level of reliability, operation without additional costs for redundant lines of power supply connection and expensive backup means of power generation can be ensured at consumer's place.
Converting substation Converting substation / 2376694
Invention is used in electric engineering. Converting substation for power plant system connecting to bipolar HVDC transmission line has DC neutral plant ensured with the first DC switches (131, 132) allowing for disconnecting the first current circuit between neutral bus (112) of the first conductor (105) and a neutral bus (111) of the other conductor (104) when substation operates in bipolar mode and switching to single-polar mode of operation, if needed. In order to isolate faulty section in system, current circuit with connecting elements (142, 143) of electrode line to direct current from the said conductor (105) to another one, there are split connection elements (142, 143) available for each electrode line (191, 192). There is a special device to connect each neutral bus to one selected connecting elements of electrode line.
Dc high-voltage power transmission device Dc high-voltage power transmission device / 2381606
Proposed device (1) comprises power supply terminal (4) to connect AC power supply circuit (2) and consumer terminal (5) to connect multi-phase consumer (3). Note here that rectifier (6) is connected behind terminal (4). The latter is connected, via intermediate DC circuit (8) comprising smoothing device (12) with inverter (9) connected, on the AC side, to aforesaid consumer connection terminal (5). Note also that rectifier (6) and inverter (9) comprise thyristor gates (9a+, 9b+, 9C+; 9a-, 9b-, 9c-), while control unit (14) triggers thyristor gates (9a+, 9b+, 9c+; 9a-, 9b-, 9c-.) of inverter (9) depending upon timed signal. Control unit (14) is connected to timed pulse generator-transducer that enjoys independent power supply. Capacitative-type apparent resistances (13) are connected to inverter (9) to switch current in direction of power flow, or aforesaid multi-phase consumer (3) has apparent resistance of said capacitative type sufficient to switch current.
Converting substation Converting substation / 2396664
Converting substation for connection of alternating current system to bipolar HVDC supply line of electric power has setting of DC neutral made with the first DC switches allowing to break the first current circuit between neutral bus (111) of one conductor (104) of the above electric power supply line and neutral bus of other conductor (105) at bipolar mode of substation for insulation of failed sector and for switching over to unipolar mode/reverse travel. Setting of DC neutral has at least two first DC switches (133, 136 and 134, 137) on the above first current circuit, which are in-series connected and provided with possibility of functioning as reserve for each other in case some of them will not be able to break the first current circuit for insulation of failed sector owing to switching over from bipolar to unipolar mode.
Converter Converter / 2396665
Converter designed for conversion of alternating voltage to direct voltage and vice versa in the converting station included in high voltage supply system includes in-series connection of many valves (10-13) of converter. Connections to transformers in the above converter are located on both of two opposite sides of the above converter valves.
Converting substation Converting substation / 2397590
Converting substation for connection of alternating current system to high voltage DC (HVDC) transmission line includes at least two converters installed in two individual rooms of converter valves (40, 41). Substation includes separate control device (49, 50) to control each converter, and separate device to provide auxiliary power supply for each converter. For each converter there installed is separate control device (51, 52) of common operating conditions, which makes each converter independent. Rooms of converter valves are separated from each other through considerable distance.
Transmission system Transmission system / 2397591
HVDC transmission system includes on one end of bipolar HVDC transmission line the converting station intended for connection of the above transmission line to AC system. This station has two converters and DC neutral circuit being common for converters. The above DC neutral circuit has individual connecting element (142, 143) of electrode line, which connects to electrode lines (191, 192). Electrode lines (191, 192) have such dimensions that when the converting station operates in single-pole mode, the transmission of actually total current to electrode station (190) through the one or several left electrode lines can be possible at disconnection of arbitrary number of electrode lines.
© 2013-2014 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.