RussianPatents.com

Containing three or more hetero rings (C07D403/14)

Azetidinyl diamides as monoacylglycerol lypase inhibitors

Azetidinyl diamides as monoacylglycerol lypase inhibitors

Invention refers to a compound of formula , wherein Y and Z are independently specified in a group of a) or b) so that one of Y or Z is specified in the group a), and another one - in the group b); the group a) represents i) substituted C6-10aryl; ii) C3-8cycloalkyl; iii) trifluoromethyl or iv) heteroaryl specified in a group consisting of thienyl, furanyl, thiazolyl, isothiazolyl, oxazolyl, pyrrolyl, pyridinyl, isoxazolyl, imidazolyl, furasan-3-yl, benzothienyl, thieno[3,2-b]thiophen-2-yl, pyrazolyl, triazolyl, tetrazolyl and [1,2,3]thiadiazolyl; the group b) represents i) C6-10aryl; ii) heteroaryl specified in a group consisting of thiazolyl, pyridinyl, indolyl, pyrrolyl, benzoxazolyl, benzothiazolyl, benzothienyl, benzofuranyl, imidazo[1,2-a]pyridin-2-yl, furo[2,3-b]pyridinyl, pyrrolo[2,3-b]pyridinyl, pyrrolo[3,2-b]pyridinyl, thieno[2,3-b]pyridinyl, quinolinyl, quinazolinyl, thienyl and benzimidazolyl; iii) benzofused heterocyclyl attached through a carbon atom, and when a heterocyclyl component contains a nitrogen atom, the carbon atom is optionally substituted by one substitute specified in a group consisting of C3-7cycloalkylcarbonyl; C3-7cycloalkylsulphonyl; phenyl; phenylcarbonyl; pyrrolylcarbonyl; phenylsulphonyl; phenyl(C1-4)alkyl; C1-6alkylcarbonyl; C1-6alkylsulphonyl; pyrimidinyl and pyridinyl; C3-7cycloalkylcarbonyl, phenyl, phenylcarbonyl, phenyl(C1-4)alkyl and phenylsulphonyl are optionally substituted by trifluoromethyl, or by one or two fluor-substitutes; iv) phenoxatiynyl; vi) fluoren-9-on-2-yl; vii) 9,9-dimethyl-9H-fluorenyl; viii) 1-chlornaphtho[2,1-b]thiophen-2-yl; ix) xanthen-9-on-3-yl; x) 9-methyl-9H-carbazol-3-yl; xi) 6,7,8,9-tetrahydro-5H-carbazol-3-yl; xiii) 3-methyl-2-phenyl-4-oxochromen-8-yl; or xiv) 1,3-dihydrobenzimidazol-2-on-5-yl optionally substituted by 1-phenyl, 1-(2,2,2-trifluoroethyl), 1-(3,3,3-trifluoropropyl) or 1-(4,4-difluorocyclohexyl); 1-phenyl is optionally substituted by one or more fluor-substitutes or trifluoromethyl; or xv) 4-(3-chlorophenyl)-3a,4,5,9b-tetrahydro-3H-cyclopenta[c]quinolin-8-yl; R1 represents C6-10aryl, C1-3alkyl, benzyloxymethyl, hydroxy(C1-3)alkyl, aminocarbonyl, carboxy, trifluoromethyl, spirofused cyclopropyl, 3-oxo or aryl(C1-3)alkyl; or when s is equal to 2 and R1 represents C1-3alkyl, the substitutes C1-3akyl is taken with a piperazine ring to form 3,8-diazabicyclo[3.2.1]octanyl or 2,5-diazabicyclo[2.2.2]octanyl ring system, and its pharmaceutical compositions.

Hepatitis c virus inhibitors

Hepatitis c virus inhibitors

Invention refers to a compound of formula:

Pyrazines applicable as delta-opioid receptor modulators

Pyrazines applicable as delta-opioid receptor modulators

Invention refers to organic chemistry, namely to pyrazine derivatives of formula I, as well as to their enanthiomers, diastereomers and pharmaceutically acceptable salts, wherein R1 is specified in a group consisting of ii) pyridinyl optionally having one substitute specified in a group consisting of C1-4alkoxy and cyano; and iii) pyrimidin-5-yl; or R1 optionally represents methoxymethyl, when Y represents ethinyl; Y represents ethinyl or a bond; R2 represents phenyl, benzofuranyl, 2,3-dihydrobenzofuranyl, benzo[1,3]dioxol-5-yl, indolyl or pyridinyl substituted by methyl, phenyl has one to two substitutes independently specified in a group consisting of C1-4alkyl, C1-4alkoxy, fluorine, chlorine, cyano, cyanomethyl, difluoromethyl, trifluoromethyl and hydroxy; or R2 represents phenyl having one C1-4alkylcarbonylamino or 1H-imidazol-1-yl substitute; X represents O or CH2; L is absent, and R3 represents 4-aminocyclohexyl, or L represents methylene, while R3 is specified in a group consisting of i) pyrrolidin-2-yl; ii) 1-aminoeth-1-yl; and iii) 1-aminocyclopent-1-yl; or R3 is combined into one cycle with L nitrogen atom to which L is attached to form piperazinyl. Besides, the invention refers to specific compounds, a pharmaceutical compound based on a compound of formula I, a method of treating pain and some neurodegenerative diseases.

Bcl-2-selective apoptosis-inducing agents for treating caner and immune diseases

Bcl-2-selective apoptosis-inducing agents for treating caner and immune diseases

Present invention refers to specific compounds or to their therapeutically acceptable salt presented in the patent claim and representing sulphonyl benzamide derivatives. The invention also refers to a pharmaceutical composition inhibiting the activity of anti-apoptotic proteins of the family Bcl-2, containing an excipient and an effective amount of a specific sulphonyl benzamide derivative.

Bruton's tyrosine kinase inhibitors

Bruton's tyrosine kinase inhibitors

Present invention refers to compounds having formula III such as below, wherein: Q represents C(Y3) or N; R represents H, -R1, -R1-R2-R3, -R1-R3 or -R2-R3; R1 represents heteroaryl or heterocyclyl each of which is optionally substituted by one or more C1-6alkyls, hydroxyC1-6alkyls, oxogroups or halogenC1-6alkyls; R2 represents -C(=O), -O, -C(R2')2, -C(R2')2C(=O), -C(R2')2C(=O)NR2', C(R2')2 N(R2')C(=O), -C(=NH), -C(R2')2NR2' or -S(=O)2; each R2' independently represents H or C1-6alkyl; R3 represents H or R4; R4 represents C1-6alkyl, C1-6alkoxygroup, aminogroup, C1-6alkylaminogroup, di(C1-6alkyl)aminogroup, heterocyclyl, C1-10alkylheterocycloalkyl, heterocycloalkylC1-10alkyl each of which is optionally substituted by one or more C1-6alkyls, C1-6alkylaminogroups, di(C1-6alkyl)aminogroups, hydroxygroups, hydroxyC1-6alkyls, C1-6alkoxygroups, oxogroups or halogenC1-6alkyls; X represents CH; X' represents CH; and the rest symbols have values as specified in the patent claim. The compounds of formula III inhibit Bruton's tyrosine kinase (Btk). There are also described compositions containing the compounds of formula III, and at least one carrier, thinner or excipient, and a method for producing the compound of formula X in accordance with the following procedure.

Bis-benzimidazole derivatives as hepatitis c virus inhibitors

Bis-benzimidazole derivatives as hepatitis c virus inhibitors

Invention refers to organic chemistry, namely to bis-benzimidazole derivatives of formula I and their optional stereoisomers, pharmaceutically acceptable salts and solvates, wherein R and R' are independently specified in -CR1R2R3, phenyl substituted by 1 substitute specified in halogen; and tetrahydrofuranyl, wherein R1 is specified in C1-4alkyl optionally substituted by methoxy, hydroxyl or dimethylamino; C3-6cycloalkyl; phenyl optionally substituted by 1, 2 or 3 substitutes optionally specified in halogen, C1-4alkoxy, trifluoromethoxy, or 2 substitutes on adjoining atoms of the ring form 1,3-dioxolane group; benzyl substituted by halogen or methoxy; pyridinyl; indolyl; pyridinylmethyl or indolylmethyl; R2 is specified in hydrogen, hydroxyl, di-C1-4alkylamino, (C3-6cycloalkyl) (C1-4alkyl)amino, C1-4alkylcarbonylamino, phenylamino, C1-4alkyloxycarbonylamino, (C1-4alkyloxycarbonyl)(C1-4alkyl)amino, C1-4alkylaminocarbonylamino, tetrahydro-2-oxo-1(2H)-pyrimidinyl, pyrrolidin-1-yl, piperidin-1-yl, 3,3-difluoropiperidin-1-yl, morpholin-1-yl, 7-azabicyclo[2.2.1]hept-7-yl and imidazol-1-yl; and R3 represents hydrogen or C1-4alkyl or CR2R3 together form carbonyl; or CR1R3 form cyclopropyl group. The invention also refers to a pharmaceutical composition based on a compound of formula I.

Synthetic immune protection mimetics and use thereof

Synthetic immune protection mimetics and use thereof

Present invention relates to a preparation which inhibits microbial growth, which includes an arylamide compound as an active compound and kleptose or captisol.

6-methyl-5-morpholynomethyl-1-(thiethan-3-yl)pyrimidine-2,4(1h,3h)-dione, demonstrating antioxidant activity

6-methyl-5-morpholynomethyl-1-(thiethan-3-yl)pyrimidine-2,4(1h,3h)-dione, demonstrating antioxidant activity

Invention relates to heterocyclic compound - 6-methyl-5-morpholynomethyl-1-(thiethan-3-yl)pyrimidine-2,4(1H,3H)-dione of formula 6-methyl-5-morpholynomethyl-1-(thiethan-3-yl)pyrimidine-2,4(1H,3H)-dione of formula: .

Phenylethynyl derivatives as hepatitis c virus inhibitors

Phenylethynyl derivatives as hepatitis c virus inhibitors

Invention relates to heterocyclic compounds of general formula I

Triazine, pyrimidine and pyridine analogues and use thereof as therapeutic agents and diagnostic samples

Triazine, pyrimidine and pyridine analogues and use thereof as therapeutic agents and diagnostic samples

Invention relates to compounds of formula

Heteroaryl compounds and using them

Heteroaryl compounds and using them

Invention refers to compounds of structural formula

Derivatives of 6-amino quinazoline or 3-cyanoquinoline, methods of their production and their application as inhibitors of receptor tyrozine kinases egfr or her-2

Derivatives of 6-amino quinazoline or 3-cyanoquinoline, methods of their production and their application as inhibitors of receptor tyrozine kinases egfr or her-2

Invention relates to field of organic chemistry, namely to heterocyclic compound of formula (I) or its racemate, enantiomer, diastereoisomer and their mixture, as well as to their pharmaceutically acceptable salt, where A is selected from the group, consisting of carbon atom or nitrogen atom; when A represents carbon atom, R1 represents C1-C6-alkoxyl; R2 represents cyano; when A represents nitrogen atom, R1 hydrogen atom or C1-C6-alkoxyl; where said C1-C6-alkoxyl is optionally additionally substituted with one C1-C6-alkoxyl group; R2 is absent; R3 represents radical, which has the formula given below: or , where D represents phenyl, where phenyl is optionally additionally substituted with one or two halogen atoms; T represents -O(CH2)r-; L represents pyridyl; R4 and R5 each represents hydrogen atom; R6 and R7 each is independently selected from hydrogen atom or hydroxyl; R8 represents hydrogen atom; R9 represents hydrogen atom or C1-C6-alkyl; r equals 1 and n equals 2 or 3. Invention also relates to intermediate compound of formula (IA), method of obtaining compound of formulae (I) and (IA), pharmaceutical composition based on formula (I) compound and method of its obtaining and to application of formula (I) compound.

Isatin derivatives applicable as imaging in vivo agents

Isatin derivatives applicable as imaging in vivo agents

There are described new isatin-5-sulphonamide derivatives of general formula or their physiologically acceptable salts, wherein R represents phenyl, 3-fluorophenyl, 2,4-difluorophenyl, 3,5-difluorophenyl, tetrahydropyranyl, diazine or triazolyl methyl optionally substituted by one C1-6alkyl, which can be additionally substituted by one halogen; R' represents phenyl optionally substituted by one or two halogens, or triazolyl optionally substituted by one C1-6alkyl which can be additionally substituted by one halogen; provided R means phenyl, R' represents optionally substituted triazolyl, pharmaceutical compositions containing the above derivatives, using them as molecular imaging agents, using them in diagnosing or treating diseases or disorders related to apoptosis dysregulation, methods for synthesis of the above derivatives, methods for molecular imaging of caspase activity and apoptosis, and methods for assessing the therapeutic exposure of the analysed compound on caspase activity.

Aminopyrazine derivatives and medications

Aminopyrazine derivatives and medications

Invention relates to novel compounds of general formula [1] or their pharmaceutically acceptable salts, which possess properties of an inhibitor of the JAK2 thyrokinase activity. In general formula radicals are selected from group (I) or (II). In group (I) X represents CH or N; R1 represents a halogen atom and R2 represents H, a halogen atom, CN, or is selected from the groups of formulas

Benzimidazole and imidazo[4,5-c]pyridine derivatives as hedgehog pathway antagonist

Benzimidazole and imidazo[4,5-c]pyridine derivatives as hedgehog pathway antagonist

Invention refers to organic chemistry, namely to a heterocyclic compound of formula I and its pharmaceutically acceptable salt, wherein if a chemical valency permits, i represents 1 or 2, R1 represents H; a linear (C1-C4) alkyl group, R2 represents H, Cl or F, X represents either N, or CR3, R3 represents H; halogen; a linear (C1-C4) alkyl or (C1-C4) alkoxyl group, Y represents Z represents O or NRx, Rx represents H or a linear or branched (C1-C4) alkyl, k is equal to 2, 3 or 4, n and p independently represents 2, and a sum of n+p cannot exceed 4, T represents H or a linear (C1-C4) alkyl group; T′ represents a linear C1-C3 alkyl chain substituted by either (C1-C6)-dialkylaminogroup, or a 5-6-merous saturated heterocycle containing one nitrogen atom and optionally containing the second heteroatom specified in O, such a heterocyclic ring is optionally substituted by a (C1-C4) alkyl chain at nitrogen atoms; or a 5-merous saturated heterocycle containing one nitrogen atom, such a heterocyclic ring is optionally substituted by a (C1-C4) alkyl chain at nitrogen atoms; r represents zero, 1; R′ represents di(C1-C4)alkylamino, (C1-C4)alkoxy; except for the compounds specified in the clause. The invention also refers to a pharmaceutical composition based on the compound of formula (I), using the compound of formula (I) and to a method of treating diseases, in which the hedgehog signalling pathway modulation is effective.

New pyrazole-3-carboxamide derivative possessing antagonist activity on 5-НТ<sub>2В</sub> receptor

New pyrazole-3-carboxamide derivative possessing antagonist activity on 5-НТ receptor

Invention refers to compounds of formula (I), wherein A means morpholinyl, 1,4-oxazepamyl, piperidinyl, pyrrolidinyl or azetidinyl which is bound to N; R1 means C1-C6-alkyl group; R2 means bicyclic aryl group specified in 1H-indolyl, 1H-pyrrolo[3,2-b]pyridyl, quinolyl, naphthyl, 1H-pyrrolo[2,3-b]pyridyl, 5H-pyrrolo[3,2-d]pyrimidinyl, 7H-pyrrolo[2,3-d]pyrimidinyl, benzo[b]thiophenyl, imidazo[1,2-a]pyridyl, benzo[b]thiazolyl, 5H-pyrrolol[2,3-b]pyrazinyl and quinoxalinyl which can be substituted by R4; R3 means hydrogen or halogen atom; R4 means C1-C6-alkyl group, C1-C6-halogenalkyl group, OR1A, halogen, -(CH2)aOH, CN, NHCOR1A, SO2R1A or NHSO2R1A; R5 means C1-C6-alkyl group, -(CH2)aOH, -(CH2)aOR1B, halogen or CONH2; provided p is a plural number, R5 can be identical or different, or R5 can be combined with another R5; each of R1A and R1B independently means C1-C6-alkyl group; a is equal to 0, 1 or 2; n is equal to 1 or 2; p is equal to 0, 1, 2, 3, 4 or 5. Besides, the invention refers to intermediate compounds of formulas (IA) and (IB) for preparing the compounds of formula (I), to a preventive or therapeutic agent containing the compounds of formula (I), pharmaceutical compositions, using the compounds of formula (I) and to a method for preventing or treating diseases.

New pyrimidine derivatives

New pyrimidine derivatives

Invention relates to the derivatives of pyrimidine with formula I, where Z is a carbon atom or a nitrogen atom; Y is a carbon atom or a nitrogen atom, where one of the Z and Y is a nitrogen atom; A, D and E are chosen from the carbon atom and nitrogen atom; R1 is hydrogen or methyl, when D is a carbon atom; R2 is hydrogen or an amine group; R3 is hydrogen, methyl, trifluoromethyl or (C0-C1) alkylaryl; R5 is hydrogen or methyl; L-R4 is chosen from: and R6 is chosen from hydrogen and methyl; R7 is chosen from hydrogen, methyl, (C1-C4)alkyl-OH and (CO)OCH3, R7a and R7b are independently chosen from hydrogen and methyl; R8 is chosen from halogen, hydrogen, hydroxy, (CO)OH, (CO)OCH3, O(C1-C4) alkyl, O(C1-C4)alkyl(C6-C10)aryl, O(C1-C4)alkyl(C2-C9)heterocyclyl, O(EtO)1-3(C1-C4)alkyl and OCF3; and R11 is chosen from hydrogen, methyl and O(C1-C4) alkyl. The invention also relates to a pharmaceutical formulation for curing of cancer which contains the compounds with the formula I, to the usage of the compounds with the formula I to produce a medicinal agent and pharmaceutical formulation and to the cancer curing method.

Diaryl ethers

Diaryl ethers

Invention relates to a compound of formula (I), to its possible stereoisomers, or to its pharmaceutically acceptable salts, where R and R1, independently on each other, represent benzoyl, substituted with one substituent, each of which is independently selected from halogen or -C(=O)-Het, where Het is optionally substituted with two substituents, independently selected from C1-4alkyl, or a group of formula -C(=O)-CH(Rx)-R6, C1-6alkyloxycarbonyl, a group of formula R8-O-C(=O)-HN-CH(R7)-C(=O)- or -C(=O)-C(=O)-phenyl; R6 represents C1-4alkyl, C3-6cycloalkyl, benzyl or phenyl, where phenyl can be optionally substituted with one, two or three substituents, each of which is independently selected from halogen, C1-6alkyl, methoxy, trifluoromethoxy, or two substituents at adjacent atoms of the ring together with a phenyl ring form benzodioxol, and where C1-4alkyl is substituted with diC1-6alkylamino, phenylsulphonyl, Het, and where benzyl is substituted with one substituent, each of which is independently selected from halogen, methoxy; Rx is selected from hydrogen, hydroxyl, diC1-6alkylamino, imidazolyl, Het represents a heterocyclic group, containing one or two heteroatoms, selected from O and N, and containing 5-6 atoms in a ring, where the said heterocyclic ring is bound with the carbonyl carbon atom through the ring carbon atom and where at least one of the said heteroatoms is adjacent to the said ring carbon atom, R2 and R3, independently on each other represent hydrogen; R4 and R5, independently on each other represent hydrogen or methoxy; each R7 independently represents phenyl or C1-4alkyl optionally substituted with methoxy; and R8 represents C1-4alkyl. The invention also relates to particular compounds and a pharmaceutical composition based on formula (I) compound.

Application of bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane dihydrobromide as fluorescent zinc (ii) cation sensor

Application of bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane dihydrobromide as fluorescent zinc (ii) cation sensor

Invention relates to application of bis(2,4,7,8,9-pentamethyldipyrrolylmethen-3-yl)methane dihydrobromide as fluorescent zinc (ii) cation sensor.

Apoptosis-inducing preparations for treatment of cancer and immune and autoimmune diseases

Apoptosis-inducing preparations for treatment of cancer and immune and autoimmune diseases

Invention relates to compound of formula or to its therapeutically acceptable salt, where A1 represents N or C(A2); A2 represents H; B1 represents H, OR1 or NHR1; D1 represents H; E1 represents H; Y1 represents CN, NO2, F, Cl, Br, I, R17 or SO2R17; R1 represents R4 or R5; Z1 represents R26 or R27; Z2 represents R30; Z1A and Z2A both are absent; L1 represents R37; R26 represents phenylene; R27 represents indolyl; R30 represents piperasinyl; R37 represents R37A; R37A represents C2-C4 alkylene; Z3 represents R38, R39 or R40; R38 represents phenyl; R39 represents benzodioxilyl; R40 represents C4-C7cycloalkenyl, heterocycloalkyl, which represents monocyclic six- or seven-member ring, containing one heteroatom, selected from O, and zero of double bonds, or azaspiro[5.5]undec-8-ene; the remaining values of radicals are given in i.1 of invention formula. Invention also relates to pharmaceutical composition, based on claimed compound.

Compounds which are erk inhibitors

Compounds which are erk inhibitors

Invention relates to compounds of formula 1.0:

Azaazulene compounds

Azaazulene compounds

Described is a specific list of various novel azaazulene compounds, which contain 6,5-condensed heterocycle of an indole type, benzimidazole type, purine type, 3H-imidaso[4,5-b]pyrene,3H-imidaso[4,5-c] pyridine, etc., which can be described by the general formula , where R1 is =O; R2 is H or diethylaminoalkyl; R3-R7 is H; other variables in the formula (I) are given in the specific structural formulas of the described compounds. A pharmaceutical composition which contains thereof is also described.

Quinazolinone, quinolone and related analogues as sirtuin modulators

Quinazolinone, quinolone and related analogues as sirtuin modulators

Invention relates to a compound of structural formula or a salt thereof, where each of Z1, Z2 and Z3 is independently selected from N and C(R9), where not more than one of Z1, Z2 and Z3 is N; each R9 is hydrogen; and is a second chemical bond between either W2 and C(R12), or W1 and C(R12); W1 is -N=, and W2(R14) is selected from -N(R14)- and -C(R14)=, such that when W1 is -N=, W2(R14) is -N(R14)- and is a second chemical bond between W1 and C(R12); R11 is selected from phenyl and a heterocycle which is selected from a saturated or aromatic 5-6-member monocyclic ring, which contains one or two or three heteroatoms selected from N, O and S, or an 8-member bicyclic ring which contains one or more heteroatoms selected from N, O and S, where R11 is optionally substituted with one or two substitutes independently selected from halogen, C1-C4 alkyl, =O, -O-R13, -(C1-C4 alkyl)-N(R13)(R13), -N(R13)(R13), where each R13 is independently selected from -C1-C4alkyl; or two R13 together with a nitrogen atom to which they are bonded form a 5-6-member saturated heterocycle, optionally containing an additional heteroatom selected from NH and O, where if R13 is an alkyl, the alkyl is optionally substituted with one or more substitutes selected from -OH, fluorine, and if two R13 together with the nitrogen atom to which they are bonded form a 5-6-member saturated heterocycle, the saturated heterocycle is optionally substituted on any carbon atom with fluorine; R12 is selected from phenyl, a 4-6-member monocyclic saturated ring and a heterocycle, which is selected from an aromatic 5-6-member monocyclic ring which contains one or two heteroatoms selected from N and S, where R12 is optionally substituted with one or more substitutes independently selected from halogen, -C≡N, C1-C4 alkyl, C1-C2 fluorine-substituted alkyl, -O-R13, -S(O)2-R13, -(C1-C4 alkyl)-N(R13)(R13), -N(R13)(R13); R14 is selected from hydrogen, C1-C4 alkyl, C1-C4 fluorine-substituted alkyl, C1-C4 alkyl-N(R13)(R13), C1-C4 alkyl-C(O)-N(R13)(R13); and X1 is selected from -NH-C(=O)-†, -C(=O)-NH-†, -NH-S(=O)2-†, where † denotes the point where X1 is bonded to R11. The invention also relates to a pharmaceutical composition having sirtuin modelling activity based on said compounds.

Alkyl [2-(2-{5-[4-(4-{2-[1-(2-methoxycarbonylamino-acetyl)-pyrrolidin-2-yl]-3h-imidazol-4-yl}-phenyl)-buta-1,3-diinyl]-1h-imidazol-2-yl}-pyrrolidin-1-yl)-2-oxo-ethyl]-carbamate, pharmaceutical composition, medication, method of treating viral diseases

Alkyl [2-(2-{5-[4-(4-{2-[1-(2-methoxycarbonylamino-acetyl)-pyrrolidin-2-yl]-3h-imidazol-4-yl}-phenyl)-buta-1,3-diinyl]-1h-imidazol-2-yl}-pyrrolidin-1-yl)-2-oxo-ethyl]-carbamate, pharmaceutical composition, medication, method of treating viral diseases

Invention relates to novel alkyl [2-(2-{5-[4-(4-{2-[1-(2-methoxycarbonylamino-acetyl)-pyrrolidin-2-yl]-3H-imidazol-4-yl}-phenyl)-buta-1,3-diinyl]-1H-imidazol-2-yl}-pyrrolidin-1-yl)-2-oxo-ethyl]-carbamates or their naphthalene-1,5-disulfonates, which possess properties of NS5A protein inhibitor and can be used for prevention and treatment of viral diseases, caused by viruses of hepatitis C (HCV) and hepatitis GBV-C. In claimed invention compounds, corresponding to general formula 1 R1, R2, R3 and R4 independently on each other stand for C1-C3 alkyl; R5 and R6 independently on each other stand for C1-C3alkyloxymethyl, or R3, and R5, and R4, and R6, together with carbon atoms, which they are bound with, independently on each other form tetrahydrofurane cycle.

Novel phenylpyrazinones as kinase inhibitors

Novel phenylpyrazinones as kinase inhibitors

Present invention relates to organic chemistry and specifically to 5-phenyl-1H-pyrazin-2-one derivatives of general formula II or pharmaceutically acceptable salts thereof, where R denotes -R1 or - R1-R2-R3; R1 denotes aryl or heteroaryl, and is optionally substituted with one or two R1'; where each R1' independently denotes C1-6alkyl, halogen or C1-6halogenalkyl; R2 denotes -C(=O), -CH2-; R3 denotes R4; where R4 denotes an amino group or heterocycloalkyl, and is optionally substituted with one or two substitutes selected from C1-6alkyl, hydroxy group, oxo group, C1-6hydroxyalkyl, C1-6alkoxy group; Q denotes CH2; Y1 denotes C1-6alkyl; Y2 denotes Y2b; where Y2b denotes C1-6alkyl, optionally substituted with one Y2b'; where Y2b' denotes a hydroxy group, n and m are equal to 0; Y4 denotes Y4c or Y4d; where Y4c denotes lower cycloalkyl, optionally substituted with halogen; and Y4d denotes an amino group, optionally substituted with one or more C1-6alkyl; where "aryl" denotes phenyl or naphthyl, "heteroaryl" denotes a monocyclic or bicyclic radical containing 5 to 9 atoms in the ring, which contains at least one aromatic ring containing 5 to 6 atoms in the ring, with one or two N or O heteroatoms, wherein the remaining atoms in the ring are carbon atoms, under the condition that the binding point of the heteroaryl radical is in the aromatic ring, "heterocycloalkyl" denotes a monovalent saturated cyclic radical consisting of one ring containing 5 to 6 atoms in the ring, with one or two ring heteroatoms selected from N, O or SO2. The invention also relates to use of the compound of formula II or a pharmaceutical composition based on the compound of formula II.

Novel substituted pyridin-2-ones and pyridazin-3-ones

Novel substituted pyridin-2-ones and pyridazin-3-ones

Invention relates to novel pyridin-2-one and pyridazin-3-one derivatives, having Btk inhibiting activity. In formulae I-IV:

Piperazine compound inhibiting prostaglandin-d-synthase

Piperazine compound inhibiting prostaglandin-d-synthase

Present invention refers to a piperazine compound presented by formula , wherein R1 represents C1-6 alkyl; R2 represents hydroxy, C1-6 alkyl which can contain a substitute specified in saturated or unsaturated 5-6 member heterocycle with 1-3 heteroatoms specified in oxygen and nitrogen, -(C=O)-N(R3)(R4) or -(C=O)-OR5; R3 and R4 may be identical or different, and each represents hydrogen or C1-6 alkyl which can contain a substitute specified in saturated or unsaturated 5-6 member heterocycle with 1-3 heteroatoms specified in oxygen and nitrogen, or R3 and R4 bound through a nitrogen atom whereto R3 and R4 are attached, can form a saturated heterocyclic group specified in 5-6 member heterocycle with 1-3 heteroatoms specified in oxygen and nitrogen; R5 represents hydrogen or C1-6 alkyl; and n represents 1 or 2; or a salt thereof. Also, the invention refers to a pharmaceutical compositions and an agent exhibiting prostaglandin-D-synthase activity and based on the compound of formula I, as well as to a method of preventing and treating a disease wherein prostaglandin D2 is involved.

2,4-pyrimidine diamine compounds and use thereof

2,4-pyrimidine diamine compounds and use thereof

Invention relates to novel of 2,4-pyrimidine diamine compounds of formula I, which inhibit degranulation of immune cells and can be used in treating cell reactions mediated by FcεRI or FcγRl receptors. In formula (I) each R2 and R4 is independently phenyl substituted with one or more R8 groups or a heteroaryl selected from a group consisting of , where the heteroaryl is optionally substituted with one or more R8 groups and at least one of R2 and R4 is a heteroaryl; R5 is selected from a group consisting of (C1-C6)alkyl, optionally substituted with one or more identical or different R8 groups, -ORd, -SRd, fluorine, (C1-C3)halogenalkyloxy, (C1-C3)perhalogenalkyloxy, -NRcRc, (C1-C3)halogenalkyl, -CN, -NO2, -C(O)Rd, -C(O)ORd, -C(O)NRcRc, -C(NH)NRcRc, -OC(O)Rd, -OC(O)ORd, -OC(O)NRcRc; -OC(NH)NRcRc, - [NHC(O)]nORd, R35 is hydrogen or R8; each Y is independently selected from a group consisting of O, S and NH; each Y1 is independently selected from a group consisting of O, S and NH; each Y2 is independently selected from a group consisting of CH, CH2, S, N, NH and NR37. Other values of radicals are given in the claim.

Compounds suitable for use as raf kinase inhibitors

Compounds suitable for use as raf kinase inhibitors

Invention relates to a compound of formula 1:

2h-chromen compound and derivative thereof

2h-chromen compound and derivative thereof

Invention refers to a 2H-chromen compound or a derivative thereof having action of a S1P1 agonist. The above may be used for preventing and/or treating a disease caused by undesired lymphocyte filtration, or a disease caused by abnormal cell proliferation or accumulation.

Water-soluble analogues cc-1065 and their conjugates

Water-soluble analogues cc-1065 and their conjugates

Invention relates to new compounds of the formula I:

5-substituted indazole as kinase inhibitors

5-substituted indazole as kinase inhibitors

Present invention refers to compounds of formula (I) or pharmaceutically acceptable salts thereof wherein A, R1, R2, R3 and m are specified in the patent claim. The present invention also refers to the number of specific compounds, and to a pharmaceutical composition containing the above compounds effective for inhibition of kinases, such as glycogen synthase kinase 3 (GSK-3), Rho kinase (ROCK), Janus kinase (JAK), AKT, PAK4, PLK, CK2, KDR, MK2, JNK1, aurora, pim 1 and nek 2.

3-(1h-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione salts

3-(1h-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione salts

Invention relates to 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrole-2,5-dione salts in crystalline form, where said salts are formed with an acid selected from hydrochloric acid, maleic acid, malonic acid and methanesulphonic acid. The invention also relates to a method of producing said salts, a pharmaceutical composition containing said salts and a method of treating diseases or disorders mediated by T lymphocytes and/or PKC, which involves addition of said salts.

Chiral cis-imidazolines

Chiral cis-imidazolines

Described are novel chiral cis-imidazolines selected from a group which includes 2-{4-[(4S,5R)-2-(2-tert-butyl-4-ethoxypyrimidin-5-yl)-4,5-bis-(4-chlorophenyl)-4,5-dimethyl-4,5-dihydroimidazole-1-carbonyl]-piperazin-1-yl}-acetamide, [(4S,5R)-2-(2-tert-butyl-4-ethoxypyrimidin-5-yl)-4,5-bis-(4-chlorophenyl)-4,5-dimethyl-4,5-dihydroimidazol-1-yl]-[4-(1,1-dioxohexahydrothiopyran-4-yl)-piperazin-1-yl]-methanone, [(4S,5R)-2-(2-tert-butyl-4-ethoxypyrimidin-5-yl)-4,5-bis-(4-chlorophenyl)-4,5-dimethyl-4,5-dihydroimidazol-1-yl]-[4-(3-methanesulphonylpropyl)-piperazin-1-yl]-methanone, 2-{4-[(4S,5R)-2-(6-tert-butyl-4-ethoxypyridin-3-yl)-4,5-bis-(4-chlorophenyl)-4,5-dimethyl-4,5-dihydroimidazole-1-carbonyl]-piperazin-1-yl}-N,N-bis-(2-methoxyethyl)-acetamide. 2-{1-[(48;5K)-2-(6-tert-butyl-4-ethoxypyridin-3-yl)-4,5-bis-(4-chlorophenyl)-4,5-dimethyl-4,5-dihydroimidazole-1-carbonyl]-piperidin-4-yl}-acetamide and others described by the general structural formula (I), and pharmaceutical composition containing said compounds.

Pyrimidyl cyclopentanes as akt/protein kinase inhibitors

Pyrimidyl cyclopentanes as akt/protein kinase inhibitors

Invention refers to new compounds of formula I, enantiomers and pharmaceutically acceptable salts thereof having the properties of AKT/protein kinase inhibitors. In formula 1 G represents phenyl, naphthalene, 5-member heteroaryl with 1 sulphur atom in a ring or 9-member bicyclic heteroaryl specified in indolyl wherein phenyl, naphthalene, 5-member heteroaryl is optionally substituted by one of three Ra groups; R1 and R1a are independently specified in H, Me, Et, -CH2OH, CF3, CHF2 or CH2F; R2 represents H, -OH, -OMe or F; R2a representsH, Me or F; R3 represents H, Me, Et; R4 represents H, 6-member heterocyclyl containing an oxygen atom as a heteroatom, cyclopropyl methyl or C1-C4 alkyl is optionally substituted F,-OH or -O(C1-C3 alkyl); R5 and R5a are independently specified in H and C1-C4 alkyl, or R5 and R5a together with an atom whereto attached form a carbonyl group or 5-6-member cycloalkyl; each Ra independently represents halogen, C1-C6-alkyl, C3-C6-cycloalkyl,-O-(C1-C6-alkyl), CF3, CN, phenyl, pyrazole, CH2F, CHF2, -OCH2F, -OCHF2, -OH, -SO2(C1-C6-alkyl), C(O)NH2; and j represents 1 or 2; and provided j represents 2, j-ring carbon atom, opposite NR4, may be substituted by heteroatom O.

Pyrimidyl cyclopentanes as akt-protein kinase inhibitors

Pyrimidyl cyclopentanes as akt-protein kinase inhibitors

Present invention refers to new compounds of formula I, enantiomers and pharmaceutically acceptable salts thereof which have selective inhibitory action on AKT protein kinase, in particular protein kinase B. In formula I: A represents R1 and R1a are independently specified in H, Me, Et. vinyl, CF3, CHF2 or CH2F:R2 represents H, OH, OMe or F; R2a represents H, Me or F; R3 represents H. Me. Et or CF3; G represents phenyl optionally substituted by one to four groups Rc, or 5-6-member heteroaryl containing one heteroatom specified in sulphur optionally substituted by halogen; R5 and R6 independently represent H, OCH3, C3-C6-cycloalkyl independently substituted by F, OH, C1-C3alkyl or O(C1-C3alkyl), 4-6-member heterocyclyl containing one heteroatom specified in nitrogen optionally substituted by F, OH, C1-C3alkyl, cyclopropylmethyl or -C(=O)(C1-C3alkyl), or C1-C6-alkyl optionally substituted by one or more groups independently specified in OH, oxo O(C1-C6-alkyl), CN, F, NH2. NH(C1-C6-alkyl), O(C1-C6-alkyl)2. cyclopropyl. phenyl, imidazolyl, piperidinyl, pyrrolidinyl, morpholinyl, tetrahydrofuranyl, oxetanil or tetrahydropyranyl. The other radical values are specified in the patent claim.

Method of producing substituted pyrimidin-5-yl carboxylic acids

Method of producing substituted pyrimidin-5-yl carboxylic acids

Invention relates to a method of producing substituted pyrimidin-5-yl carboxylic acids of formula I and can be used in organic chemistry. The method is realised by reacting N-substituted guanidines and hetarylamidines with ethoxymethylene derivatives of 1,3-ketoesters according to a scheme given below (where the substitutes are as defined in the claim).

Method of producing benzimidazoles

Method of producing benzimidazoles

Invention relates to basic organic synthesis and specifically to a method of producing N,N'-bis and N,N,N,N-tetrakis-benzimidazolylmethyl N,N'-bis (piperazinoethyl) ethylenediamines, N,N'-bis and N,N,N,N-tetrakis-benzimidazolylethyl-N,N'-bis (piperazinoethyl) ethylenediamines, which are obtained by reacting carboxylic acids: N,N'-bis and N,N,N,N-tetrakis-carboxyethyl and N,N'-bis and N,N,N,N-tetrakis-carboxyethyl N,N'-bis (piperazinoethyl) ethylenediamine with ortho-phenylenediamine while heating first at temperature of 100-125°C for 0.6-1.5 hours and then at 130-150°C for 2.5-3.4 hours in the medium of an aromatic organic solvent with molar ratio hexamino diacid: phenylenediamine=1:2.1-2.15 and hexamino tetracid:phenylenediamine=1:4.1-4.15. The end product is separated by distilling the reaction mass. The aromatic organic solvent used is ortho-, meta- and para-xylenes or a mixture of ortho-, meta- and para-xylenes.

Crystalline modifications of 3-(1h-indol-3-yl)-4-(4-methylpiperazin-1-yl)quinazolin-4-yl)pyrrol-2,5-dione

Crystalline modifications of 3-(1h-indol-3-yl)-4-(4-methylpiperazin-1-yl)quinazolin-4-yl)pyrrol-2,5-dione

Present invention refers to novel crystalline forms of 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrol-2,5-dione acetate salt, their use for the treating the diseases mediated by T-lymphocytes or PKC, to a pharmaceutical compositions thereof, and a method for preparing them. The presented crystalline forms have: a strong diffraction peak at the angle of 2θ making 21.5° for the A form, or a strong diffraction peak at the angle of 2θ making 9.7° for the B form. The mentioned crystalline forms can be prepared by dissolving 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrol-2,5-dione in 2-propanol at higher temperature, and then cooling after salt formation for preparing the A form, or dissolving 3-(1H-indol-3-yl)-4-[2-(4-methylpiperazin-1-yl)quinazolin-4-yl]pyrrol-2,5-dione in ethyl acetate at higher temperature and then cooling after salt formation for preparing the B form.

Cyclopenta(d)pyrimidines as protein kinase akt inhibitors

Cyclopenta(d)pyrimidines as protein kinase akt inhibitors

Invention refers to compounds of formula I , as well as to enantiomers and salts thereof, wherein R1 and R1a are independently specified in H, Me, Et, CH=CH2, CH2OH, CF3, CHF2 or CH2F; R2 and R2a are independently specified in H or F; R5 represents H, Me, Et or CF3; A is presented by formula: ; wherein G, R6, R7, Ra, Rb ,Rc, Rd, R8, m, n and p are presented in cl. 1 of the patent claim.

Phenylpyrazol derivatives

Phenylpyrazol derivatives

Invention refers to a phenylpyrazol derivative presented by formula (1) or to its pharmaceutically acceptable salt: wherein R1 and R2, which may be identical or different, each represents C1-C6 alkyl, or R1 and R2 are coupled together with an adjacent nitrogen atom to form a 5-6-merous saturated heterocylic ring (wherein the mentioned saturated heterocylic ring may be substituted by halogen or C1-C6 alkyl), n represents an integer 0 to 2, T represents a hydrogen atom, halogen or C1-C6 alkyl, and R has one of formulas (I)-(V), (VII) or (VIII):

Method of producing n, n'-bis(β-piperazinoethyl)-2-aryl(alkyl)imidazolidines

Method of producing n, n'-bis(β-piperazinoethyl)-2-aryl(alkyl)imidazolidines

Invention relates to a method of producing N,N'-bis(β-piperazinoethyl)-2-aryl(alkyl)imidazolidines, which involves reaction of 60-80% aqueous solution of N,N'-bis(piperazinoethyl)ethylenediamine(hexamine) with an aromatic or aliphatic aldehyde at temperature of 100-120°C for 1-1.5 hours, and then at 175-185°C for 2-2.5 hours with distillation of water, wherein the molar ratio of hexamine to the aromatic or aliphatic aldehyde is 1:(1.1-1.3). The aldehyde used can be benzoic or salicylic or butyric or isobutyric aldehyde.

Heteroaryl pyrrolidinyl and piperidinyl ketone derivatives

Heteroaryl pyrrolidinyl and piperidinyl ketone derivatives

Invention relates to a compound of formula I or use thereof to prepare a medicine for treating depression, anxiety or both: or pharmaceutically acceptable salts thereof, where m is 0-3; n is 0-2; Ar is: optionally substituted indolyl; optionally substituted indazolyl; azaindolyl; 2,3-dihydro-indolyl; 1,3-dihydro-indol-2-one-yl; optionally substituted benzothiophenyl; benzothiazolyl; benzisothiazolyl; optionally substituted quinolinyl; 1,2,3,4-tetrahydroquinolinyl; quinolin-2-one-yl; optionally substituted naphthalenyl; optionally substituted pyridinyl; optionally substituted thiophenyl or optionally substituted phenyl; R1 is: C1-6alkyl; hetero-C1-6alkyl; halo-C1-6alkyl; halo-C2-6alkenyl; C3-7cycloalkyl; C3-7cycloalkyl-C1-6alkyl; C1-6alkyl-C3-6cycloalkyl-C1-6alkyl; C1-6alkoxy; C1-6alkylsulphonyl; phenyl; tetrahydropyranyl-C1-6alkyl; phenyl-C1-3alkyl, where the phenyl part is optionally substituted; heteroaryl-C1-3alkyl; R2 is: hydrogen or C1-6alkyl; and each Ra and Rb is independently: hydrogen; C1-6alkyl; C1-6alkoxy; halo; hydroxy or oxo; or Ra and Rb together form C1-2alkylene; under the condition that, when m is 1, n is 2, and Ar is an optionally substituted phenyl, then R1 is not methyl or ethyl, and where optionally substituted denotes 1-3 substitutes selected from alkyl, cycloalkyl, alkoxy, halo, haloalkyl, haloalkoxy, cyano, amino, acylamino, monoalkylamino, dialkylamino, hydroxyalkyl, alkoxyalkyl, pyrazolyl, -(CH2)q-S(O)rRf; -(CH2)q-C(=O)-NRgRh; -(CH2)q-N(Rf)-C(=O)-Ri or -(CH2)q-C(=O)-Ri; where q is 0, r is 0 or 2, each Rf, Rg and Rh is independently hydrogen or alkyl, and each Ri is independently alkyl, and where "heteroaryl" denotes a monocyclic radical having 5-6 ring atoms, including 1-2 ring heteroatoms selected from N or S, wherein the rest of the ring atoms are C atoms, "heteroalkyl" denotes an alkyl radical, including a branched C4-C7-alkyl, where one hydrogen atom is substituted by substitutes selected from a group consisting of -ORa, -NRbH, based on the assumption that the bonding of heteroalkyl radical occurs through a carbon atom, where Ra is hydrogen or C1-6alkyl, Rb is C1-6alkyl. Pharmaceutical compositions based on said compound are also disclosed.

1, 2, 4-triazine-3, 5-dione derivatives for treating disorders reacting on dopamine d<sub>3</sub> receptor modulation

1, 2, 4-triazine-3, 5-dione derivatives for treating disorders reacting on dopamine d3 receptor modulation

There are described new 1,2,4-triazine-3,5-dione derivatives of general formula (I) wherein A is a saturated hydrocarbon chain with chain length 4 to 6 atoms; R1 and R2 are optionally hydrogen or C1-C3-alkyl; R3 is branched C4-C6-alkyl or C3-C6-cycloalkyl; R4 - C1-C6-alkyl, C3-C6-cycloalkyl or fluorinated C1-C3-alkyl, their physiologically acceptable salts and N-oxides, and a pharmaceutical composition containing them.

Hydroxylated and methoxylated cyclopenta[b]pyrimidines as protein kinase inhibitors

Hydroxylated and methoxylated cyclopenta[b]pyrimidines as protein kinase inhibitors

Present invention refers to new compounds of general formula (I), (the radical values are presented in the patent claim) including their split enantiomers, split diastereomers, solvates and pharmaceutically acceptable salts. What is also described is a method for preparing new compounds, a pharmaceutical composition containing them.

Substituted n-phenyl-bipyrrolidine ureas and therapeutic use thereof

Substituted n-phenyl-bipyrrolidine ureas and therapeutic use thereof

Invention relates to substituted N-phenyl-bipyrrolidine ureas of formula (I) ,

Protein kinase inhibitor (versions), use thereof for treating oncological diseases and based pharmaceutical composition

Protein kinase inhibitor (versions), use thereof for treating oncological diseases and based pharmaceutical composition

Invention refers to compounds of formula

Substituted n-phenylbipyrrolidine carboxamides and therapeutic use thereof

Substituted n-phenylbipyrrolidine carboxamides and therapeutic use thereof

Invention relates to substituted N-phenylbipyrrolidine carboxamides of formula , where values of R, R1, R2, R3 and R4 are given in claim 1.

Polycyclic indazole-derivatives and their application as erk inhibitors for cancer treatment

Polycyclic indazole-derivatives and their application as erk inhibitors for cancer treatment

Invention relates to particular compounds, which demonstrate inhibiting activity with respect to ERK, whose structure formula is given in description, to their pharmaceutically acceptable salts, based on them pharmaceutical composition and their application for treatment of cancer, mediated by ERK activity.

Pyrimidine compounds, compositions and methods of use

Pyrimidine compounds, compositions and methods of use

Invention refers to new pyrimidine derivatives and their pharmaceutically acceptable salts possessing the properties of a mTOR kinase inhibitor. In formula (I): A represents a 6-8-member mono- or bicyclic heterocyclic ring containing 1 to 2 heteroatoms optionally specified in N and O as apexes of the ring and having 0-2 double bonds; and wherein the ring A is additionally substituted by 0 to 2 substitutes RA specified in a group consisting of -ORa, -Rc and -(CH2)1-4-ORa wherein Ra is optionally specified in hydrogen and C1-6alkyl; Rc represents C1-6alkyl; G is specified in a group consisting of -C(O)-, -OC(O)-, -NHC(O)- and -S(O)0-2-; B is specified in a group consisting of phenylene and 5-6-member heteroarylene consisting 1-2 nitrogen heteroatom as apexes of the ring, and substituted by 0 to 1 substitutes RB specified in F, Cl, Br, I and Rp; wherein Rp represents C1-6 alkyl; D is specified in a group consisting of -NR3C(O)NR4R5, -NR4R5, C(O)NR4R5, -NR3C(=N-CN)NR4R5, -NR3C(O)R4, -NR3C(O)OR4 and -NR3S(O)2R4, and wherein the group D and a substitute placed on an adjoining atom in the ring B, optionally combined to form a 5-6-member heterocyclic or heteroaryl ring containing 1 to 3 heteroatoms specified in N, O and S, as apexes of the ring and substituted by the substitute 0-1 RD. The R1-R5 radical values are presented in the patent claim.

Another patent 2551283.

© 2013-2015 Russian business network RussianPatents.com - Special Russian commercial information project for world wide. Foreign filing in English.