Method of controlling additional water reserves in irrigation of cutover bogs

FIELD: fuel industry.

SUBSTANCE: invention relates to peat digging, specifically to the work on the restoration of peat bogs on the cutover bogs and their rehabilitation, as well as the water regulation of the irrigable area with guaranteed maintenance of the normal banked up water level at any flood intensity. Claimed method of controlling additional water reserves in irrigation of cutover bogs is a structurally control system that includes a cascade control system with ponds 1 and 2 accumulating on-site runoff water flowing from nearby bogs. Ponds 1 and 2 are equipped with dams 3 and 4 and have a surface water outlet with a siphon and a bottom outlet with gate 8. Main channel 10 is made by barriers 11 arranged in a cascade in the direction of the water flow and connected to two meandering channels 12 and 13, such as serpentine. Meandering channels 12 and 13 are provided at the end with shutters 14 and 15 and are connected to the pond-distributor of connate water 16. Barriers 11 consist of a retaining overflow wall with an axis of rotation. Main channel 10, meandering channels 12 and 13, barriers 11 are made of environmentally friendly materials, for example, from planks of chipped or wicker twigs of shrub vegetation in the form of willow or alder. Upper wall of the meandering channels is located below the calculated water level on the cutout bogs. Problem solution of fire safety should be complex, which creates the possibility of introducing the proposed method, where the moisture content of the peat deposit is maintained at the moisture level of more than 50%. In addition, due to the resumption of bog and peat formation processes and the subsequent revival of biospheric functions.

EFFECT: such a method of water regulation of the irrigable area rationally uses cascades, both from ponds and in the main channel with barriers for irrigation of the cutover bogs, allows the use of on-site runoff of snow melt water and rainwater; the material costs are reducing, and the danger of emergencies is also reducing and the ecological situation around the cutover bogs is improving.

4 cl, 4 dwg

 



 

Same patents:

FIELD: technological processes.

SUBSTANCE: invention relates to the reclamation of sludge pits, production of artificial earth mixtures based on drilling sludge and can be used in the mining and oil-producing industries. The method consists in the subsequent collection of liquid oil, then, bituminised oil from water surface of the pit, pumping-out of a water phase from the pit, creation of cutting backfills, collection of the bituminised oil from the surface of the drilling sludge, collection of the bituminised oil, oil sludge and oil-contaminated soil from the diking surface of the drilling sludge pit, mixing of the obtained drilling sludge with peat and sand in the following ratio, vol %: drilling sludge not more than 75.0, peat not less than 18.0, sand not less than 7.0, at the total content of the components, which is equal to 100 vol % in the volumes providing the obtainment of soil performing a function of soil-forming rock, with further quality control of the soil, reinforcement of its surface, creation of a fertile layer and by planting; with that, the total volume value of the soil performing the function of the soil-forming rock, volume of a material for the creation of cutting strips, volume of a material for the reinforcement of the soil surface, volume of a material for the creation of the fertile layer is chosen based on the equality or non-exceedance of the volume of the drilling sludge pit.

EFFECT: obtaining the soil performing the function of the soil-forming rock - a component of natural environment, which has improved quality characteristics.

2 cl, 7 tbl, 1 ex

FIELD: ecology.

SUBSTANCE: material for reclamation of solid domestic waste landfills and quarries comprises the natural soil and industrial wastes. As the industrial wastes it comprises final slag formed during the production of ferrovanadium using aluminium-silicothermal manner with the mass ratio of natural soil to the industrial wastes equal to 1:1.

EFFECT: expansion of range of technical means.

2 dwg, 1 tbl

FIELD: construction.

SUBSTANCE: method includes separate excavation, displacement and piling of soil layer and overburden rocks into separate band dumps, mining of a pit field, filling of the mined space with construction wastes to the border of the upper level of ground water, and the composition of the wastes is close to natural minerals with different size of fractions, in layers with subsequent compaction of each layer, laying of a draining layer with construction wastes having thickness of not more than 0.6 m and with fraction size of 150-200 mm. At the same time they first perform design and planning works for construction of roads, passages, hydraulic engineering and land reclamation structures, then above the draining layer they do primary fill of the mined space of the pit with a mixture made of overburden rocks and ground construction wastes with fraction size of the latter not more of 100 mm that are mixed in equal proportions. Fill is carried out to complete filling of the mined space of the pit, then a layer of soil mixture with seeds of perennial herbs of meadow-weed group is applied onto the surface planed with a bulldozer, and at least in one year they perform final planning, then ploughing of the planed surface with subsequent levelling, afterwards roads are connected, and hydraulic engineering and land reclamation structures are arranged, and the restored area is divided into sections to bury remains.

EFFECT: reduced volumes of soil excavation for creation of a fertile layer and improvement of environmental situation.

FIELD: agriculture.

SUBSTANCE: in the river valley the dams of embankment are constructed for creation of fields of filtration and prevention of spreading of sewage water from the reclamated plot. At that the sewage water from the dredging water reservoir with a high content of suspended clay particles is fed through the hoses on the planned surface of the reclamated plot, and the place of pulp supply is periodically changed on the area of the reclamated plot.

EFFECT: return of the clay material in the pore space of coarse-grained sediment dredging that leads to saturation of deposits with fine soil and to improvement of the hydrothermal regime and increase in soil fertility.

2 dwg

Coal strip mining // 2523246

FIELD: mining.

SUBSTANCE: proposed method comprises the steps that follow. Top soil layer is removed to be preserves or to be transferred to territories to be reclaimed, loosening, loading and conveying stripped rock to make the waste dumps, dislodging, loading and coal transfer to storage and reclamation of dumps. Note here that seam weathered coal approaching the day surface is extracted and stored separately. Waste dumps are levelled to apply soil and weathered coal layers thereon. Produced layer is loosened with stripped rock and rolled.

EFFECT: higher efficiency.

FIELD: construction.

SUBSTANCE: method includes separate mining, movement and piling of soil layer and stripping rocks into separate belt dumps, mining of a open-pit field, filling of the mined space to the border of the upper level of ground waters with construction wastes. Afterwards they perform design and planning works to construct roads, passages, hydraulic engineering and land reclamation structures. Then they start filling the mined space in two stages. At first they do the primary filling of the mined space of the pit with a mix made of stripping rocks and ground construction debris with fraction size of the latter of not more than 100 mm mixed in equal proportions. Filling is done until complete filling of the mined space of the pit, then along the surface planned by a bulldozer they apply on top a layer of a soil mixture with seeds of perennial herbs of meadow-weed group, and final planning is carried out not sooner than in one year. Then the planned surface is ploughed, with subsequent levelling and filling of the entire surface of the mined space with a layer of sand with thickness of at least 100 mm with subsequent light levelling. Afterwards roads are connected, hydraulic engineering and land reclamation structures are arranged, and the entire surface of the planned surface of the mined space is divided into sections, in each one they perform burials of certain years and for the standard depth of burial.

EFFECT: reduced labour inputs for restoration works, protection of soil against wind and water erosion.

FIELD: mining.

SUBSTANCE: invention relates to mining and may be used for recultivation of anthropogenic structures and strengthening of dust-producing surfaces. The method includes treatment of stored tailings with a binding compound, sowing of perennial herbs and compaction of the surface layer. At the same time previously, for formation of a pedogenic layer, they treat the surface of the tailing dump with a zeolite hydraulic mix at the ratio of zeolite-water equal to 1:2 and perform tillage of the surface layer. And treatment of soil with a binding compound, sowing of perennial herbs and compaction of the surface layer is carried out simultaneously, at the same time binding compounds are water-soluble polymers.

EFFECT: creation of a pedogenic layer due to application of zeolite tuffs onto the surface of the tailing dump, making it possible to exclude application of fertilisers, to strengthen development of herbal root systems, thus to increase efficiency of biological recultivation of a tailing dump.

2 cl, 2 ex, 1 dwg, 1 tbl

FIELD: mining.

SUBSTANCE: sowing of herbs and hard-shrub species is carried out in indents of uneven surface of mine dumps. Simultaneously with that Nitraria sibirika is sown into grooves cut on the tops of process crests of dumps.

EFFECT: reduced time for complete design coverage of anthropogenically damaged lands with plants.

FIELD: mining.

SUBSTANCE: method includes filling of the mined space to the border of the upper level of ground water with construction wastes, arrangement of the drainage layer with construction wastes, formation of a hill in the centre of the pit by dumping of stripping rocks with subsequent terracing of hill slopes and arrangement of places for burial of remains, at the same time underground tomb structures are arranged on terraces, being designed for several graves, besides, each tomb structure is made with hydraulic insulation, drainage system, drainage and ventilation systems, at the same time the ventilation system is additionally equipped with a separate air duct installed with an angle of inclination of not more than 35 degrees and made in the form of a hollow vertical channel filled with stems of cane located in the ground in close proximity from the tomb structure with the possibility to connect each subsequent grace to it in the tomb structure.

EFFECT: reduced labour costs and costs of recovery works, rational usage of land.

1 dwg

FIELD: mining.

SUBSTANCE: method includes filling of a mined-out space of a quarry to the border of the upper level of ground water with construction wastes, arrangement of a drainage layer with construction wastes, formation of a hill in the centre of the mined-out quarry from stripping rocks with terracing of its slopes, installation of a drainage system, retaining walls, and arrangement of places on terraces for burial of remains, at the same time retaining walls for terraces are made of reinforced concrete cylindrical piles by means of their submersion in soil, pile caps are rigidly connected to each other with the help of concrete mortar, and on terraces they arrange underground vault structures with hydraulic insulation, water disposal system, drainage and ventilation systems, at the same time the first burial is made for depth of more than three meters, and the distance from the cover of the last burial to the level of terrace surface ground shall make at least one meter.

EFFECT: rational use of restored land areas.

1 dwg

FIELD: agriculture.

SUBSTANCE: invention relates to the field of hydraulic engineering, namely the preparation of wastewaters in irrigated agriculture for irrigation and fertilising of plants. The biological stabilisation storage pond comprises a closed water intake water reservoir area in the form of a storage pond 1, having a water-supply tube 2 with the fed collector 21, and a water distribution device at the inlet of the discharge pipeline 4. The water distribution device has two concentrically arranged rings, the inner 5 of which is connected to the pipeline of the outlet, and the outer 6 - to the pipeline of inlet and is located in the lower point of the inclined bottom. The inlet opening of the ring 5 is provided with an air pipe 9 with a valve 10, one end of which is mounted at the inlet to the discharge pipeline 4, and the other communicates with the atmosphere. The source of pressurised air and gas emitted from the wastewaters is made in the form of a mixing chamber 11 with the mesh cloth 12 at the upper part, sequentially arranged on the discharge pipeline 4 below its input. The chamber 11 is connected by the tube 13 with the perforated tubes 14 located in the cavity of the inner ring 5. In the side walls of the inner rings 5 there are air-gas slotted openings 16. In order to regulate the conditions of discharge of the wastewaters into the pond and their removal from the side of the grid 8 at filling the pond 1 a shield 19 can be mounted with an inclination towards the bottom of the pond. The shield 19 can be mounted on a horizontal axis of rotation 20 and is connected by the rods with the drive of vertical movement. According to the second embodiment the storage pond comprises successive water reservoirs with inclined bottoms and water distribution devices. The water distribution devices are formed as two concentrically arranged rings, the inner of which is connected with the discharge pipeline and the outer - with the pipeline of feeding of flows, located in the lower point of the inclined bottom. The inner ring is provided with an air pipe with a vent, one end of which is mounted at the inlet to the discharge pipeline, and the other communicates with the atmosphere. In the side walls of the inner ring there are air-gas outlet openings. The water distribution devices are connected on the discharge pipeline with the mixing chambers.

EFFECT: device improves the efficiency of protection of intake of wastewaters from entering floating debris and simultaneous contributes to decontamination when feeding wastewaters for irrigation The design of the device enables to mix the air due to the organisation of the process of air-gas connection and discharging it from the chamber, which is in the gaseous state.

4 cl, 3 dwg

FIELD: agriculture.

SUBSTANCE: for desalination of heavy saline lands, water is supplied to the desalinisation site, the slits 3 are cut, the irrigation pipes 6 with droppers 7 are placed along the central axis of the inter-slit bands, the inter-slit bands are covered with waterproof screens. Then the wash water is fed through the droppers 7, the soil with salt is moved from the walls of the slits 3 at their bottom after the termination of washing, and the slits 3 are poured. Before cutting the slits 3 the deep loosening 2 is carried out. The slits 3 are cut with a bias of the bottom towards the collector and matched with it. Along the central axis of the inter-slit bands the troughs 5 are formed by compacting, in which the pipes 6 with droppers 7 are placed. After moving to the bottom of the slits 3 of soil with salt they are poured first with gravel as the layer of 0.2-0.3 m, then with sand of the field surface. Then, the site surface is levelled and ploughing is carried out with the formation of the arable layer.

EFFECT: increased efficiency of desalination of heavy saline lands with minimal cost of water, diversion of excess precipitation with removal of salts beyond the desalinisation site.

3 dwg

FIELD: construction.

SUBSTANCE: water outlet comprises the inlet 1 and transit 2 channels, associated with water intake gallery, having the water inlet opening in the upper part, covered with grid 11. Grid 11 also covers the V-shaped threshold 10, which separates the sediments before the bottom slot of gallery into coarse fractions. The side walls of the supply channel 1 are provided with guide elements with possibility of their displacement towards the threshold. Guide elements are designed with L-shaped vertical walls 13 with shelves 14, placed above the bottom of the supply channel 1. The lower edges of vertical walls are installed relative to the bottom of the inlet channel 1 with gap. Gallery is made with intake portal in the form of tube, the upper part of the case of which with oblique cut 6 is located above the slotted hole of the gallery. Due to the fact that the cross-section portal of tube with the inlet portion 5 is located slightly above the bottom of the chamber, the water flow to the discharge pipeline is increased, and flow regime through the portal into the transit channel 2 occurs without splashing and all sediments go down. In the presence of bending, the flow speed profile is more uniform in the pipeline, which reduces the tendency of flow separation from the inner curved wall and reduces the energy losses along the length of the pipeline, caused by the vortex turbulence. Pressure losses in the inlet portion at the presence of tubular portion, curved in three dimensions, as in the outlet portion of the pipeline, are reduced.

EFFECT: construction of water outlet as a whole provides its protection against the sediments, as well as in case of the absence of water inlet and simplification of the design at the increased discharge capacity, besides the length of the discharge pipeline is reduced respectively.

2 cl, 5 dwg

FIELD: agriculture.

SUBSTANCE: method comprises preparation of a field ditch and an irrigation furrow with opening the shoulder of the field ditch, into the shoulder of the field ditch a plastic bottle with the volume of 1.5-2 litres with a truncated bottom at the height of 3 cm is placed, the bottom is placed in the cut place of the bottle with the reverse side, the bottom serves as the means of water start and turning off the water flow into the irrigation furrow, and at low flow rates of water the start and turning off the water after finishing watering is carried out by the bottle lid.

EFFECT: simplification of the method and improvement of the quality of irrigation.

FIELD: construction.

SUBSTANCE: water divider includes supply (2) and transit (3) channels, control gates and bottom well (1) with division walls (8-10) located in it and provided with horizontal caps (11-13) in the upper part dividing the well into chambers. Bottom well (1) is provided with L-shaped caps (15-18), the flange of which faces downwards, which are arranged in each chamber and attached to the middle part of the chamber wall opposite to a horizontal cap. Division walls (8-10) have water-carrying slot-shaped openings (20-22) covered from above with horizontal flanges (23-25) and from below with horizontal flanges (26-28) respectively. Water outlet slot-shaped holes (20-22) are arranged in series opposite L-shaped caps (15-17). The upper part of division walls (8-10) has fractures (29-31) in a vertical plane with specified angles functionally depending on a value of water intake with each chamber of bottom well (1). Surface areas of inlet openings of chambers increase in flow direction above well (1). Each chamber of bottom well (1) has cone-shaped bottom (32-35) directed with a convex in an upward direction. Well (1) with chambers arranged in it is connected to an outlet channel by means of a water-jet damping well. Operating efficiency is improved due to stabilisation of discharged consumption and carrying capacity is increased in a mode of free flow at a wave structure of a flow.

EFFECT: formation of a stable hydraulic jump is provided; with that, spreading of a common jet in an outlet channel is maintained.

2 cl, 3 dwg

FIELD: agriculture.

SUBSTANCE: drainage-humidification system comprises a supply 1 and a discharge 2 closed irrigation pipelines interconnected with water distribution executive unit. The water distribution executive unit consists of a vertical pipe 3 mounted on the supply pipeline 1 and the working chamber 4 of pressure with separation from it by the membrane 5 with the rod 6. The water distribution executive unit, the valve gear 19, the container 24 with the float 23, and the rotary valve 44 with the control pipeline are located in series. The cavity 11 of the chamber 4 is connected via the hydraulic pipeline 64 provided with a valve 65, with the switch 27, the shank of which is fixed pivotally with one end of the lever 50 to the rod 22. Movement of the upper lever 50 is limited by the upper stop 58, and the lower lever 51 - by the lower stop 59 above and below the threshold level in the storage container 24. The valve gear 19 is made in the form of a cylinder and has a double piston 20 which is pivotally coupled to the rod 22 of the float actuator. The valve gear 19 is connected to the supply irrigation pipeline 1 through the control pipeline 34 to the valve 35 and is respectively connected to the manifold 42 with drains-humidifiers 43. The storage container 24 with a siphon 28 communicates through the rotary valve 44 to the control pipelines 31, 34, respectively, with valves 32, 35 and with the supply pipeline 1.

EFFECT: system enables to create closed automated systems in land reclamation, to save water resources, to obtain the necessary productivity of agricultural products with the effective use of land.

6 cl, 3 dwg

FIELD: measurement equipment.

SUBSTANCE: invention relates to the field of hydraulic engineering, in particular, to methods for determination of water losses from irrigation ditches. The method consists in arrangement of an insulated compartment in a ditch, comprising two polymer water impermeable links, which for the time of determination of filtration losses are closed into slots on the bottom of the ditch at the distance of 3050 m, with subsequent hydraulic insulation of joint areas. Maintenance of polymer water impermeable links in the stable position is carried out with the help of a metal polymer rope pulled into open holes in the upper part of links and fixed to coastal anchors. To reduce impact in process of measurements of external factors, on top between water impermeable links there is a tent pulled from light impermeable polymer film. Measurement of water level in the compartment is carried out in special pockets fixed at the outer side to links and communicating with an insulated compartment with the help of three rows of holes in upper, middle and lower parts. For measurement of water level each pocket is equipped with a portable needle level metre (point-gauge) with a vernier scale division price of 0.1 mm, which is fixed on the metal stand, installed in the upper part of the slope above the measured water level.

EFFECT: increased accuracy of measurement of water losses for filtration from channels with anti-filtration lining.

4 cl, 3 dwg

FIELD: agriculture.

SUBSTANCE: invention relates to the field of ecology, environment protection and rational nature management and can be used for purification of river water, climate regulation in drought and also contributes to creation of a reserve of fresh water for the economic and social needs of the population. The essence of the technical solution is that the water reservoirs with the depth of 2.5-3 m, the width of 120-150 m, the length of 250-280 m, the surface area of water of 3-3.5 ha are formed in interstream areas on the river banks at a distance of 150-200 m from the mainstream. The water reservoirs are connected to the river bed by input and take-out channels. At the bottom of the water reservoirs the zeolite-containing clay - irlites are placed with the layer of 10-15 cm.

EFFECT: method enables to reduce the level of pollution of river waters, to create optimal climatic conditions for human living, flora and fauna, the sustainable development of coastal ecosystems and the whole lowland interfluvial landscapes, while simultaneously providing reserve of ecologically clean fresh water for domestic, household and other needs of the population.

FIELD: agriculture.

SUBSTANCE: invention relates to ecology and soil science. The method of assessment of degradation degree of industrial landscape in chemical contamination provides the analytical determination of the total number of the chemical pollutant element, the quantity of chemical pollutant element being in the mobile form in soil of the industrial landscape, and, separately, geographically conjugated unpolluted landscape. A procedure of assessment of pollution of the landscape is proposed, consisting of three stages: normalisation of industrial landscape pollution and geographically conjugated unpolluted landscape; determination of the ratio of pollution standard of industrial landscape and the pollution standard of geographically conjugated unpolluted landscape; determination of the degree of degradation of industrial landscape on the ratio of pollution standards under the proposed nonlinear scale of degradation degree of industrial landscape.

EFFECT: proposed method in practical use enables to improve the reliability of detection of degradation degree of industrial landscape in case of chemical pollution.

1 tbl, 1 ex

FIELD: chemistry.

SUBSTANCE: weed plants are preliminarily mowed in discharge canal to water level and is left to dry. After drying reed and rush plants are selected. Selected plants are used as sorbent. Filtering cassette net of cassette-holding device is filled with sorbent. Sorbent-containing device is fixed in discharge canal bed in monolithic manner and drainage outflow is passed through it. Plant mowing and replacement of filtering cassette are carried out when rice plant passes from one vegetation stage into another.

EFFECT: invention makes it possible to improve reclamation state of soil and ecological situation on rice fields due to reduction of suffusion and removal of nutrients from soil.

2 cl, 2 dwg, 2 tbl

FIELD: fire safety.

SUBSTANCE: method of fire extinguishing for small contour peatlands is to prepare the trench (ditch), in which the pipelines 1 with holes 2 are laid. In the cavity of the pipelines 1 the additional pipelines 3 with perforation 4 are placed. In the storage water reservoir through the automatic water level regulator of the tail bay 7 the water level is set, then the water enters the well-distributor 5. The well 5 is connected by the low-pressure pipeline with automatic water level regulator of the tail bay 7. The water from the well-distributor 5 is supplied to each perforated pipeline, the inlet of which is connected with the well-distributor 5 at the level of its bottom. The water is supplied to the pressure pipeline 8 from the storage water reservoir 36 using mobile pumping station. The pressure pipeline 8 is hydraulically connected to the automatic water level regulator 7. The drain of storm rainfall or snowmelt is fully retained in the storage water reservoir and flows into the perforated pipelines 3 and then into the cavity of the main pipeline 1 with holes from which water comes into the upper layers of peat.

EFFECT: increased level of fire safety in peatlands, reduced risk of emergencies, and improved overall environmental situation around the peatlands.

3 dwg

Up!