Active management of underwater coolers

FIELD: technological processes.

SUBSTANCE: system comprises the input (A) and the output (B), as well as at least a first cooler and a second cooler. The first cooler and the second cooler are connected to each other in series. The cooling system additionally comprises at least a third cooler connected in parallel with the first cooler and the second cooler. The cooling system additionally comprises at least one flow controller for guiding the flow through at least one cooler. At least one of the coolers comprises a bypass circuit and/or a recirculation loop. The coolers comprise temperature control devices and sensors allowing the operator to monitor the cooling system and the coolers and allowing the entire flow or part of the flow to be bypassed through the bypass circuit.

EFFECT: increasing the flow cooling efficiency and ensuring that cooled flow temperature is maintained in the specified value range.

12 cl, 6 dwg

 



 

Same patents:

FIELD: heating.

SUBSTANCE: cooling device of a heat exchange type for a transformer includes the following: an insulation oil circulating pipe made in the form of a closed circuit so that insulation oil added to the transformer is taken to the outside and then it returns again to the transformer; an insulation oil pump designed for transfer of insulation oil; and an insulation oil cooling system designed for cooling of insulation oil; the insulation oil cooling system includes the following: a liquid cooling agent maintained in a liquid state throughout the circulation cycle; a cooling agent circulating pipe designed for the liquid cooling agent circulation; a cooling agent pump designed for transfer of the liquid cooling agent; and a heat exchange part made so that heat exchange is provided between the liquid cooling agent and insulation oil for insulation oil cooling.

EFFECT: reducing weight and dimensions of the device.

12 cl, 7 dwg

FIELD: heating.

SUBSTANCE: heat exchanger plates are arranged one after another in a plate heat exchanger, forming several gaps between plates for the first medium and several gaps between plates for the second medium. A heat exchanger plate comprises a heat transfer zone (10), an edge zone (11), which continues around and outside the heat transfer zone (10), and a device (25), designed to receive or transfer a signal. The heat exchanger plate also comprises a communication module (20), comprising an electronic circuit (21), connected to the specified device and a communication facility, making it possible to exchange the specified signal with a control device (30) by means of at least of the communication module (20) of another heat exchanger plate, contained in the packet of plates.

EFFECT: simplified assembly, increased reliability of heat exchanger operation.

16 cl, 6 dwg

FIELD: heating.

SUBSTANCE: heat exchanging plate for plate heat exchanger contains a heat transfer zone (10) and edge zone (11), extended around the heat transfer zone. The heat exchange plate is a plate with a double wall formed by two adjacent plates, compressed to be contacted with each other. The heat exchange plate contains the sensor (20), which is designed with a possibility of determination, at least, one parameter and output of the parameter-dependent signal, and the sensor has a sensor probe (21), designed to be located between adjacent plates.

EFFECT: improvement of leak detection in plate heat exchangers with the plates with double walls.

18 cl, 9 dwg

FIELD: machine building.

SUBSTANCE: automatic keeping of a heat carrier temperature inside a tube within the specified range is performed. A liquid-and-gas tube-and-shell heat exchanger with an automatic control system for the heat exchange process control comprises a casing from two concentrically set cylinders with heat exchanging tubes installed in-between, the upper part of the central tube is fitted with a gas damper with the output end of its axis being connected to a drive mechanism which is presented as a lever coupled with a heat controller by a rod.

EFFECT: development of design for a tube-and-shell liquid-and-gas heat exchanger with automatic control.

4 dwg

FIELD: machine building.

SUBSTANCE: heat exchanger system through which the liquid flows comprises a heat exchanger with liquid inlet and outlet, a bypass valve with liquid inlet and outlet and a self-cleaning filter with a liquid inlet and two liquid outlets; one of the latter is meant for the filtered liquid and the other - for the unfiltered liquid. The filtered liquid outlet is connected to the heat exchanger inlet and the unfiltered liquid outlet - to the valve inlet, the heat exchanger outlet is connected downstream regarding the valve outlet.

EFFECT: heat exchanger clogging up is excluded.

9 cl, 3 dwg

FIELD: heating.

SUBSTANCE: during adjustment of a sealing gap depending on temperature between a movable seal and a rotary rotor of a regenerative heat exchanger, at least one adjustment device is used, comprising several rod elements, due to interaction of which with each other sliding adjustment of the seal is developed, at the same time at least two of these rod elements are controlled separately via according chambers with the help of a control medium of alternating temperature, so that these rod elements are exposed to different temperatures. The invention also relates to a regenerative heat exchanger, where such an adjustment device may be used, and the method to adjust sealing gaps.

EFFECT: development of a simple automatic and cheap method to adjust the seal in the regenerative heat exchanger.

25 cl, 5 dwg

Heat exchanger // 2363904

FIELD: heat engineering.

SUBSTANCE: invention relates to heat engineering, particularly to heat exchangers and can be used in heat exchanging or heat-transmitting devices. Heat exchanger with case, which allows primary inlet connection, primary exhaust connection, repeated inlet connection and repeated exhaust connection, between primary inlet connection and primary exhaust connection it is located primary flow path of primary side, and between repeated inlet connection and repeated exhaust connection it is located repeated flow path of repeated side, herewith primary flow path is in condition of heat exchange with repeated flow path.

EFFECT: improvement of heat exchanger parametres, achieved ensured by auxiliary control unit passes through the intermediate space, located between primary flow path and in repeated flow path.

16 cl, 4 dwg

FIELD: heating systems.

SUBSTANCE: automatic gas heater control device relates to control and monitoring systems. It contains the following parts connected to each other: controller, relay switching panel with electromagnetic relays, voltage converter, terminal plate, and LED indicators with built-in resistors. Controller is connected to LED indicators through the terminal plate. Controller, relay switching panel, and voltage converter are connected to terminals for output.

EFFECT: simplifying the design at maintaining the required functional capabilities.

4 cl, 3 dwg, 1 tbl

Heat exchanger // 2334929

FIELD: heating.

SUBSTANCE: invention is referred to thermal engineering and may be used in district heating systems for heating service water. Heat exchanger contains primary circuit channel located between inlet and outlet connections, secondary circuit channel located between supply pipeline assembly and return pipeline assembly, heat-conducting device between primary circuit channel and secondary circuit channel, and temperature sensor. Temperature sensor is located between secondary circuit channels close to connection with return pipeline. Besides, temperature sensor contacts with heat-conducting device or situates at small distance from it.

EFFECT: space saving in heat exchanger when temperature is measured and good results are achieved.

7 cl, 5 dwg

FIELD: systems for automatic control of technological processes for cooling natural gas with use of apparatus for air cooling, possibly in after-compressing stations of gas fields in northernmost regions for sustaining optimal operation modes of air cooling apparatus for natural gas.

SUBSTANCE: system includes frequency-controlled drive unit; unit for processing measurement information and for automatic control; temperature pickups; electronic unit of temperature pickups; computing unit; two actuating devices; blowers. Signals of temperature pickups are fed through electronic unit to unit for processing measurement information and for automatic control. Said unit for processing measurement information judges (on base of inlet signals) what blowers are to be used and sends respective electric signal to computing unit. With the aid of computing unit one actuating device turns on electric motors of blowers due to their alternative connection with frequency-controlled drive and connects with AC-source electric motors of blowers. Other actuating device controls temperature of walls of heat exchange tubes in all sections of air cooling apparatus of gas and connects with frequency-controlled drive electric motor of blower of that section where temperature of walls of heat exchange tubes differs from preset value. After achieving preset temperature value of walls of heat exchange tubes of selected section, apparatus turns off electric motor of blower from frequency-controlled drive and switches it to AC source. Similar operations may be realized for electric motors of blowers if necessary.

EFFECT: simplified system for automatic control of apparatus for air cooling of natural gas.

1 dwg

FIELD: heating.

SUBSTANCE: heat exchange device includes elements in the form of spirally wound pipes with alternating straight and ring-shaped sections located opposite each other. The elements are installed in each other with ring-shaped sections. The straight sections of adjacent elements in the heat exchange device are located on one side, and the ring-shaped sections are located on the other side; with that, the elements in the cross section of the heat exchange device are located about its axis in a circumferential direction, with orientation of the ring-shaped sections to the above said axis. The straight sections in the elements can be located in different planes at an angle to each other. In this case, rings of the ring-shaped sections have different diameters, which are maximum in the middle of the elements and minimum in its end sections. At alignment of direction of windings of the adjacent elements, the planes that adjoin the outer side of the ring-shaped sections intersect the axis of the heat exchange device at an acute angle. At mutually opposite direction of the windings of the adjacent elements, the above planes and the axis are parallel.

EFFECT: reduction of overall dimensions of the heat exchange device due to a sealed layout of adjacent elements in it; possibility of arranging it in cylindrical, annular, toroid-shaped and spherical cavities.

4 cl, 14 dwg

FIELD: heating.

SUBSTANCE: in the heat exchanging device the finned heat exchanging tube with the diameter d is made serpentine-shaped with an outer finning diameter D and the thickness of the fins L1, located at a distance L2 from each other. The amplitude of the serpentine A on the outer finning diameter is not less than A=D×(2+1L1+L2L11), the wave period of the serpentine P is not less than P=2D×(1+1L1+L2L11).

EFFECT: intensification of heat exchanging due to turbulence in the flow passing inside the finned serpentine-shaped tubes, and increase in the area of heat exchanging of the device.

23 cl, 8 dwg, 2 tbl

FIELD: power engineering.

SUBSTANCE: heat exchanger-reactor comprises a vessel in the form of a truncated cone, with a surface concave towards its vertical axis with bottoms, nozzle for coolant inlet and outlet from tube and shell spaces. Inside the vessel 1 there is a tube bundle arranged, comprising at least two rows of cone-shaped pipes fixed with ends in holes of plates along concentric circumferences. Tubes are installed with an inclination simultaneously in two directions: with an inclination to a vertical axis of the vessel and with an additional inclination arranged by displacement of ends in a circumferential direction, i.e. along arcs of circumferences of their installation in tube plates. At the same time inclination angles are arranged within the limits of 0.5-50.0 degrees from the vertical plane stretching via the vertical axis of the vessel.

EFFECT: no necessity to increase input parameters of a coolant, which helps to save thermal and electric power.

5 cl, 4 dwg

FIELD: power engineering.

SUBSTANCE: plant comprises a jacket that passes in longitudinal direction between the head end and the base end, inside which there are inbuilt elements that form a heat-exchange and a mixing structure. Besides, there is coolant medium supply as an internal flow into pipes of inbuilt elements from the base end to the head end and fluid supply as an external flow from the head end to the base end. The plant comprises reinforcement elements to stabilise inbuilt elements in longitudinal direction from pressure gradients developed by fluid, besides, in the main area they are joined with reinforcement elements into a partial structure, which is not exposed to thermal expansion, and in the side area they remain at least partially non-reinforced to form a partial structure capable of thermal expansion in longitudinal direction.

EFFECT: increased efficiency of heat exchange, improvement of the plant.

14 cl, 4 dwg

FIELD: oil and gas industry.

SUBSTANCE: heating device of high-viscous oil products and their mixtures includes cylindrical housing with inlet and outlet covers with the appropriate inlet and outlet connection pipelines, tube grids located inside the housing, and distributing inlet and outlet boxes equipped with inlet and outlet tubes respectively and interconnected with ends of tube grids for pumping of heat carrier. Housing is located vertically, lower outlet cover is tapered with outlet connection pipe in lower part, which is enveloped below that cover with inlet distribution box which has the possibility of exchanging the heat with taper surface of lower cover, and upper inlet cover is equipped with inlet connection pipe installed coaxially with the housing; at that, tube grid is made in the form of hopper bent inside the housing and converging downwards; inside that hopper there located is baffle plate distributing the flow of oil products to tube grids and uniformly connected along the perimetre at least to three tubes of the grid with heat-conducting plates.

EFFECT: device is reliable-to-operate, and uniform resistance to flow of oil products is provided.

2 dwg

Heat exchanger // 2384802

FIELD: heating.

SUBSTANCE: invention refers to heat engineering and can be used as heat exchanger of nuclear power plant operating in variable load conditions. In heat exchanger containing a bundle of heat exchange zigzag-shaped tubes with external finning in straight sections, which is installed in the housing, spacers arranged between tubes of the bundle so that mixing chambers are formed in the bending area of the latter, the spacers have thickenings in straight tube sections and grooves evenly spaced relative to them so that an individual channel is formed around each tube, which interconnects mixing chambers to each other.

EFFECT: providing forced heat exchange for obtaining small overall dimensions of equipment owing to increasing uniform temperature field in cross section of tube bundle, and decreasing relative tube deformation at thermal elongations.

4 dwg

Heat exchanger // 2378595

FIELD: heating systems.

SUBSTANCE: invention refers to heat engineering and can be used during arrangement of high thermally stressed heat exchanger of nuclear power plant. In heat exchanger consisting of bank of heat exchange coil tubes the ends of which are fixed in tube sheets arranged in the form of a platen, straight sections of several coil tubes are located consequently in one plane, and bent sections are opened to the side from location plane of straight sections; at that, opening of bends of opposite ends, straight sections, is made to different sides.

EFFECT: providing maximum compactness of tube bank of heat exchanger and reaching high degree of heat exchange efficiency owing to arrangement of heat removal surface itself during operation, increasing life time of reliable operation of heat exchanger design at high specific thermal stresses of the volume occupied with it.

5 dwg

Heat exchanger // 2341751

FIELD: power engineering.

SUBSTANCE: invention can be used in feed water heaters of thermal and nuclear power plants. Proposed heat exchanger consists of a shell inside which a central header and vertical tube platens connected with their ends to appropriate central header chambers are installed. At that each platen is made at least of one "П"-shaped section with transverse parts installed in the shell one above the other, and intermediate part wherein external tubes are installed longitudinally on the shell side, and internal tubes are located on the header side. Internal tubes of the intermediate section part are made with additional sections bent in the direction of central header and located between transverse parts of this section. In this case average tube length makes bigger in each platen, which leads to less number of tubes used in each platen, and therefore to velocity increase in tube and intertube spaces of platens and heat exchange intensification, which finally reduces heat exchanger specific amount of metal.

EFFECT: reducing thermal and hydraulic maldistributions in platens, which also improves platen heat exchange and reduces to a greater degree the heat exchanger specific amount of metal.

2 dwg

FIELD: mechanics, heating.

SUBSTANCE: in compliance with the invention, the heat exchanger-modular water heater incorporates one or two modules each comprising, at least, two heat exchanger units integrated by a diffuser to feed a cooling medium and a confuser to withdraw the medium to be cooled, primarily, a turbine hot exhaust gas. It also comprises the manifolds feeding and withdrawing the medium being heated, primarily, air, each communicating, via a tube plates fitted directly in the said manifold walls, with the multi-row bank of the four-pass heat exchanger variable standard-size pipes, the said standards sizes being calculated from the ratios covered by this invention and the aforesaid tube plates being secured by appropriated spacers. The multi-row bank can be made up of, at least, two trains of two-pass U-shape pipes integrated by the aforesaid manifolds and, at least, one bypass chamber.

EFFECT: high-efficiency heat exchanger, lower heat exchanger metal input, optimum design and spacers, higher design rigidity, simpler assembly of heat exchange pipe banks.

21 cl, 16 dwg

FIELD: mechanics, heating.

SUBSTANCE: in compliance with the invention, the heat exchanger-modular water heater incorporates one or two modules each comprising, at least, two heat exchanger units integrated by a diffuser to feed a cooling medium and a confuser to withdraw the medium to be cooled, primarily, a turbine hot exhaust gas. It also comprises the manifolds feeding and withdrawing the medium being heated, primarily, air, each communicating, via a tube plate, with, at least, one multi-row bank of multipass heat exchange pipes, the various pipes being furnished with bends varying in number from four to six and forming four rectilinear runs combining their three bends. Note here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. The unit of the heat exchange-modular air heater comprises four runs of the heat exchanger pipe multi-row four-pass bank, the said pipes being laid in horizontal rows spaced in horizontal and vertical planes, the manifolds feeding and withdrawing the medium being heated, each being connected, via separate tube plates, with heat exchanger pipes, each tube plate being mounted in the aforesaid manifold walls. Note here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. In compliance with the proposed invention, the aforesaid heat exchanger unit-modular air heater comprises a carcass, a bottom, and upper and lower casing walls, a diffuser to feed the medium to be cooled and a confuser to feed the aforesaid medium, manifolds feeding and withdrawing the medium to be heated and furnished with tube plates that form, in every row, an even number of rectilinear multi-pipe banks including, at least, two inner and two outer banks integrated by constant-radius bends. Note here that the unit housing bottom, cover and one of the side walls represent panels with a reinforcement framing elements forming a flat rod systems, while the unit carcass is formed by a set of the aforesaid flat rod systems with intermediate posts inter jointing the aforesaid systems and the manifolds housings rigidly fixed thereto and, in their turn, attached to the unit bottom and inter jointed via two-ring diaphragms and a pipe medium displacer. Note that the parts of the aforesaid manifolds housings with the aforesaid tube plates and pipe medium displacer fitted therein form, when combined, the unit housing rigid face wall while the side walls allow fastening the diffuser and confuser elements. Note here also that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs. In compliance with this invention, the aforesaid heat exchanger unit-modular air heater incorporates a multi-row heat exchanger pipe bank made up of, at least, two bundles of two-pass U-pipes forming, within one bundle, two-run horizontal rows of pipes spaced apart both in rows and between rows, manifolds of feeding and withdrawing the medium being heated and, at least one bypass chamber arranged there between. Note here that the aforesaid manifolds and the bypass chamber communicate with the heat exchanger pipes via a common tube plate or separate tube plates, at least, one part of the said plates forming a part of the aforesaid manifolds enclosure walls. Note also here that the spacing in, at least, one direction, within the band cross section, of a part of the pipes or within their limits, or of, at least, one bank of the pipes out coming from the medium feed manifold, or, at least, in one of the next runs in the same direction does not comply with that of the pipes or a part of them in their bank run right nearby the manifold withdrawing the medium being heated and/or in one of the previous bank runs.

EFFECT: higher heat exchange efficiency, lower metal intensity of regenerative air heater.

34 cl, 15 dwg

FIELD: heating.

SUBSTANCE: at manufacture of a gas air cooling unit, manufacture and installation of heat exchange sections with heat exchange tubes, gas supply and discharge headers and a supporting structure of the unit is performed. Connection of heat exchange tubes to a header is made through horizontal and inclined combs; with that, X-shaped edge preparation for welding is made in the horizontal comb; V-shaped edge preparation for welding is made in the inclined comb; the horizontal comb is welded to the header; a rectangular cavity is made on the horizontal comb from the contact point of the comb and the header; the inclined comb is tack welded to the header; a comb installation device is removed; the inclined comb is welded to the header; heat treatment and air cooling is performed; holes are drilled in combs; ends of heat exchange tubes are inserted into holes of the combs; ends of heat exchange tubes are welded in the holes of the combs; heat exchange sections are assembled.

EFFECT: simpler connection of heat exchange tubes and the header.

6 dwg

Up!