Method of thermomechanical processing of rods from biphase titanium alloys for producing low values of linear expansion thermal coefficient in rod axis direction

FIELD: metallurgy.

SUBSTANCE: method of thermomechanical processing of rods from biphase titanium alloys with a molybdenum equivalent of 3.3 to 22% includes hardening of the rod and its cold deforming. Before hardening, the rod is subjected to hot deformation at the temperature in the range of 500°C through Tpt-20°C with the axial texture β-phase <110> with a pole density of, at least, three. Hardening of the rod is carried out at temperatures ranging from 720°C to Tpt followed by a cold deformation along the axis of the rod at the temperature of not more than 300°C and with a relative elongation of 1 to 30%, where Tpt - the temperature of the polymorphic transformation of the alloy.

EFFECT: alloy is characterized by a low thermal coefficient of linear expansion at high strength and satisfactory plasticity.

1 dwg, 2 tbl, 1 ex

 



 

Same patents:

FIELD: metallurgy.

SUBSTANCE: invention relates to metallurgy, in particular to the method of fabrication of thin sheets from two-phase titanium alloy with microcrystalline structure which, in particular, is suitable for superplastic heat deformation. The method includes furnace charge preparation, ingot smelting, ingot deformation in a slab in three stages, slab machining, slab rolling for semifinished rolled products, cutting of semifinished rolled products into work pieces, rolling of work pieces into sheets, heat treatment and moulding. The titanium alloy ingot is melted which contains wt %: 3.5-6.5 Al, 4.0-5.5 V, 0.05-1.0 Mo, 0.5-1.5 Fe, 0.10-0.2 O, 0.01-0.03 C, 0.005-0.07 Cr, 0.01-0.5 Zr, 0.001-0.02 N, the rest is titanium, with the strength of aluminium [Al]eqstr=6,011,55 and molybdenic [Mo]eqstr=3,55,6 equivalents.

EFFECT: obtaining of high-strength sheet products with the thickness < 3 mm with high plastic properties at the room temperature and suitable for SPD when heating.

5 cl, 4 dwg, 3 tbl

FIELD: process engineering.

SUBSTANCE: invention relates to machine building, particularly, to vacuum-chemical hardening of parts. Proposed process comprises preliminary annealing, mechanical processing and alphanising. Alphanising is carried out in electric furnace at 760÷780°C in vacuum of 10-1÷10-3 mm Hg for 1.5÷2 h. Then, the part is cooled, first, in vacuum together with furnace and, then, in atmospheric air to get alphanised 0.007-0.02 mm deep ply that features hardness of 600-900 HV.

EFFECT: simplified and accelerated process, higher surface hardness, non-polluting process.

2 dwg

FIELD: technological processes.

SUBSTANCE: invention relates to rolling and may be used in manufacturing of armoured sheets from (α+β)-titanium alloy. The method to manufacture armoured sheets from (α+β)-titanium alloy includes preparation of charge, melting of a bar with the following composition, wt %: 3.0-6.0 Al; 2.8-4.5 V; 1.0-2.2 Fe; 0.3-0.7 Mo; 0.2-0.6 Cr; 0.12-0.3 O; 0.010-0.045 C; <0.05 N; <0.05 H;<0.15 Si; <0.8 Ni; balance - titanium. Further the bar is shaped into a slab, which is mechanically processed and rolled for semi-finished rolled products, the semi-finished rolled products are cut into stocks and rolled in stages for sheets, and then thermal treatment is carried out.

EFFECT: sheets are characterised by high strength and ballistic properties.

3 cl, 2 dwg, 3 tbl

FIELD: metallurgy.

SUBSTANCE: invention refers to metallurgy, particularly to titanium alloys with enhanced ballistic and mechanical properties. Titanium alloy includes mainly the following components, wt %: aluminium 4.2-5.4, vanadium 2.5-3.5, iron 0.5-0.7, oxygen 0.15-0.19, and the rest is titanium.

EFFECT: titanium-based alloy obtained from recycled materials shows minimum ballistic limit V50 of ca 1848 ft/sec, and high characteristics of yield strength, tensile strength and elongation.

23 cl, 6 dwg, 4 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: deformation of a peripheral part of a billet is performed by rolling with rolls at the superplasticity temperature in the deformation zone so that a sheet is formed. The central part of the billet is cooled down prior to rolling-off to the elastic deformation temperature. During the rolling-off process, the central part of the billet and the sheet subject to non-contact deformation is cooled down by action of a cooling medium on the central part. Cool-down of the sheet to its elastic non-contact deformation temperature is provided in a zone adjacent to the central part. Between the specified zone and the deformation zone, an intermediate zone is formed, in which temperature obtains an average value between elastic deformation temperature and superplasticity temperature and/or values close to the specified average value. In the rolling-off process, cooling medium pressure is increased with expansion of the cooled zone of the sheet. Intermediate zone temperature is maintained.

EFFECT: improving quality of manufactured parts and enlarging technological capabilities of their manufacturing method.

3 cl, 6 dwg, 7 ex

FIELD: metallurgy.

SUBSTANCE: method includes billet deposit and further torsion ensuring shear deformation. The billet deformation is made in Bridgman peens with specific pressure 3-6 GPa application. The movable peen is rotated relatively to its axis with speed 0.02-1.5 rpm. During the peen rotation the cyclic change of the specific pressure is performed by 10-20% of current value with rate 0.1-1.5 of specified speed of the peen rotation.

EFFECT: cyclic load application at intensive plastic torsional deformation ensures uniform microstructure and increases strength and microhardness of the billet material.

4 cl, 5 dwg, 1 tbl

Titanium material // 2544976

FIELD: metallurgy.

SUBSTANCE: invention relates to metallurgy, namely to titanium materials with high strength and processibility. Titanium material contains iron 0.60 wt % or less and oxygen 0.15 wt % or less, titanium and inevitable impurities are the rest. Material has a non-recrystallised structure formed by processing accompanied by plastic deformation and a recrystallised structure formed by annealing after the above treatment; average size of recrystallised α-grains is 1 mcm or more and 5 mcm or less, and surface area of the non-recrystallised part in a cross section of titanium material is more than 0 to 30%.

EFFECT: material is characterised by high strength and processibility.

2 dwg, 2 tbl, 45 ex

FIELD: metallurgy.

SUBSTANCE: manufacturing method cold-deformed pipes from α- and pseudo-α-alloys based on titanium involves melting of an ingot, forging of an ingot in β- and α+β-region with ending of forging in α+β-region into an intermediate shell with forging reduction of 2 to 3; piercing is performed at the temperature that is by 30-50°C higher than Tpp, by multiple-cone rolls and a mandrel with the specified geometry with water supply to a deformation zone, rolling of the shell is performed at the temperature that is by 10-90°C lower than Tpp; straightening of the pipe shell is performed at the temperature of 350-400°C, cold rolling is performed with drawing coefficient of 1.5-4.5 at several stages by alternation with intermediate annealing processes at the temperature equal to 600-750°C, and further heat treatment with the ready dimension at the temperature of 580÷650°C.

EFFECT: high mechanical properties of manufactured pipes, as well as high quality of pipe surface.

4 dwg, 3 tbl

FIELD: metallurgy.

SUBSTANCE: invention relates to metallurgy, namely to a method for obtaining technically pure nano-twinned titanium material. The method for obtaining technically pure nano-twinned titanium material involves casting of technically pure titanium material containing not more than 0.05 wt % N, not more than 0.08 wt % C, not more than 0.015 wt % H, not more than 0.50 wt % Fe, not more than 0.40 wt % O and the rest is not more than 0.40 wt %; cast material is brought to the temperature on the level of or below 0°C and plastic deformation is performed at this temperature in such a degree that nano-twins are formed in the material.

EFFECT: material is characterised by high strength and ductility characteristics.

15 cl, 6 dwg, 4 tbl, 4 ex

FIELD: process engineering.

SUBSTANCE: invention relates to production of long articles from titanium or its alloy or blanks of such articles. Proposed method consists in preparation of titanium or titanium alloy mix (10), melting said mix by electric arc at scull melting (20), casting of one or several ingots, primarily cylindrical in shape, in diameter smaller than 300 mm from said fused mix (30). Then, said ingots are drawn at 800-1200°C at draw bench (40) for application in, for example, aircraft engineering.

EFFECT: higher quality, simplified production.

13 cl, 3 dwg

FIELD: metallurgy.

SUBSTANCE: workpiece is arranged in two supporting and moving supports; tensile and compressive stresses are created by movement of the workpiece through a tool with creation of an electroplastic effect by using pulse or direct current. As the tool, a die with equal cross channels is used, and as supports supporting and moving the workpiece and at the same time as a source of pulse or direct current, reversible line motors are used. Tensile and compressive stresses are created with a combination of force action directions; for that purpose, reversing of line motors is performed, and the value of created stresses is controlled by variation of the value of forces developed by the motors.

EFFECT: improving mechanical properties of metal due to formation in it of fine-grained equiaxial structure.

4 dwg

FIELD: metallurgy.

SUBSTANCE: invention relates to metallurgy, and namely to methods for obtaining high-strength and high-viscosity fasteners of any structural parameters with and without a thread. The method for obtaining fasteners from low-carbon alloyed steel of 15Kh3G3MFT type involves hot plastic deformation of an ingot of low-carbon steel so that a rod is obtained with further cooling in the air, heat treatment at temperatures of complete austenisation with accelerated cooling, cold plastic deformation using die blocks, and upsetting. In order to perform martensitic hardening, accelerated cooling is performed in the air from temperature of hot plastic deformation. After accelerated cooling in the air is completed, cold plastic deformation is performed with degrees of 55-60% by a method of radial forging with strikers arranged uniformly around the rod and forming at closure an inner surface of a conical profile, thus forming a detachable die block, and a rod of the specified diameter of the workpiece of the fastener is obtained. After that, heat treatment is performed by accelerated heating for hardening with austenisation at the temperature of 850-1000°C by charging the workpiece into a hot furnace with air atmosphere; then, accelerated cooling is performed so that a structural state of packet nanomartensite is obtained simultaneously with upsetting of the workpiece in austenitic state so that a head for bolts is obtained or without any upsetting so that the specified structural parameters of a fastener are obtained.

EFFECT: invention provides simultaneous improvement of a set of mechanical properties (strength, reliability and relaxation resistance) of fasteners; enlargement of a field of use of systemic low-carbon alloyed steels.

1 tbl, 2 dwg

FIELD: metallurgy.

SUBSTANCE: device includes heated container, screw with drive and two rolls with similar diameters one of which is provided with groove, and the other one is provided with projection, which form closed pass at the outlet of which a matrix with hold-down device is installed. Between container and rolls there located is antechamber having inner cavity with variable cross section and consisting of section of rectangular cross section the dimensions of which do not exceed the pass height as to the height at cross point of maximum diameters of roll with groove and roll with projection, and as to width they correspond to width of closed pass, and section of conical cross section, the minimum sizes of which coincide with sizes of section of rectangular cross section, and maximum diameters at the boundary with container are determined with diameter on the basis of the following: where D - diameter of antechamber at the boundary with container; b - width of closed pass; hmin - height of closed pass in the smallest cross section.

EFFECT: use of the device allows improving the quality of items owing to improving mechanical properties and enlarging manufacturing capabilities.

2 cl, 2 dwg, 1 tbl

FIELD: plastic working of metals, namely processes for manufacturing rods of titanium alloys used, for example for manufacturing fastening parts.

SUBSTANCE: method comprises steps of hot rolling billet formed of ingot; etching formed rod, subjecting it to vacuum annealing, daring, subjecting drawn rod to air annealing for two stages and mechanically working for final size. In first variant of invention air annealing is performed at first at temperature 650 - 750°C for 15 - 60 min at cooling in air till 20°C and then at temperature 180 -280°C for 4 - 12 h at cooling in air till 20°C. According to second variant of invention air annealing is realized at first at temperature 750 - 850°C for 15 - 45 min at cooling in furnace till 500 - 550°C and then cooling in air till 20 °C.

EFFECT: homogenous structure along rod section, increased rupture limit strength and percentage elongation, lowered labor- and power consumption.

2 cl, 1 tbl, 2 ex

FIELD: equipment for working wire at process of making it, possibly changing contour of wire cross section, for example for rounding ribs of tetrahedral wire.

SUBSTANCE: wire production line includes multi-row disc shears for slitting coiled material; unit for working wire ribs; apparatus for plastic working of wire in the form of rotor with axial opening for wire. Said apparatus is mounted with possibility of rotation around wire from drive unit of rotor. Line also includes at least one pair of rolls mounted in rotor with gap for passing wire. Said rolls are mounted with possibility of rotation from drive unit of rolls in direction of wire feed. One roll is cylindrical, other roll has working protrusion with cylindrical surface or several such protrusions mutually spaced by intervals.

EFFECT: possibility of producing in line thin and super-thin wire with low tearing.

2 dwg

The invention relates to the processing of metals by pressure, namely lines, in particular to automatic lines for the production of profiled wires (or rods) solid cross-section of any desired geometric cross-sectional shape (circular, square, triangular and t

The invention relates to the processing of metals by pressure

The invention relates to a method of manufacturing a wire, providing: (a) preparing a circular disk elecrodeposition copper, (C) rotation of the specified disk around its Central axis, (C) feeding the cutting tool to the outer edge of the specified disk to remove copper tape from a specified disk, and (D) molding the specified tape copper to obtain many lived copper wire, is provided to simplify and cheapen the process

The invention relates to the field of metal forming and can be used to produce blanks with regulated physico-mechanical properties, including, due to the formation of fine patterns

The invention relates to a method of manufacturing a powder filler strip for welding a wide surfaces on products

FIELD: equipment for working wire at process of making it, possibly changing contour of wire cross section, for example for rounding ribs of tetrahedral wire.

SUBSTANCE: wire production line includes multi-row disc shears for slitting coiled material; unit for working wire ribs; apparatus for plastic working of wire in the form of rotor with axial opening for wire. Said apparatus is mounted with possibility of rotation around wire from drive unit of rotor. Line also includes at least one pair of rolls mounted in rotor with gap for passing wire. Said rolls are mounted with possibility of rotation from drive unit of rolls in direction of wire feed. One roll is cylindrical, other roll has working protrusion with cylindrical surface or several such protrusions mutually spaced by intervals.

EFFECT: possibility of producing in line thin and super-thin wire with low tearing.

2 dwg

Up!