Method of producing nanostructured target for producing molybdenum-99 radioisotopes

FIELD: nuclear engineering; technological processes.

SUBSTANCE: invention relates to reactor technology of producing molybdenum-99 radioisotope (99Mo), which is a base for creation of radioisotope technetium-99m of generators (99mTc). Method of producing target for production of radioisotope molybdenum-99 is carried out by reacting 98Mo(n,γ)99Mo flowing in a stream of slow neutron nuclear reactor, using a matrix-buffer of mesoporous inorganic materials, in channels which are fed molybdenum compounds. Production of target is carried out by impregnation of sorbent Al2O3 with specific surface area of 200 m2/g with ammonium paramolybdate solution (NH4)6Mo7O24 and subsequent thermal treatment in a stream of oxygen, resulting in formation on surface of channels of a nanolayer of MoO3. Average thickness of nanolayers MoO3 applied in series into channels is set by number of applications and is limited by effective diameter of channels. After irradiation separation containing core recoil buffer Al2O3 and starter nanoparticles MoO3 is achieved by elution of more than 97 % MoO3 from target with 20 % solution of ammonia in water.

EFFECT: obtaining a uniform distribution of molybdenum in volume of Al2O3 during precipitation of molybdenum coating on surface of its mesopores, simple method of making a target, higher efficiency of producing 99Mo due to creation of nanolayers over entire volume of matrix, achieving high homogeneity of “nanolayer-Mo - buffer” with high efficiency of using starting material and collection of recoil atoms.

3 cl, 1 tbl, 1 ex

 



 

Same patents:

FIELD: chemistry.

SUBSTANCE: method of obtaining radioisotope 99Mo includes the irradiation of a target by a beam of neutrons with the following extraction of the target radioisotope, formed as a result of a 98Mo(n,γ)99Mo reaction. As the target applied are nanoparticles of metallic molybdenum or its compounds, insoluble in water, or a water solution of alkali, or water NH4OH solution. Irradiation of the target is carried out in water, or water alkali solution, or water NH4OH solution. The target radioisotope 99Mo is separated in the composition of an anion of water-soluble molybdate(99MoO4)-2 from nanoparticles.

EFFECT: increase of the specific activity of 99Mo radioisotope.

FIELD: physics.

SUBSTANCE: in the disclosed method of obtaining a 228Th radionuclide, which involves irradiating a target, the target material is a natural thorium isotope - 230Th, the target is placed in a linear electron accelerator and irradiated with γ-quanta of deceleration radiation, and the desired 228Th radionuclide accumulates therein during the threshold nuclear reaction 230Th(γ,2n)228Th. The target material can be 230ThF4 or 230ThO2 or 230Th metal.

EFFECT: obtaining α-radiating nuclides, which enables to eliminate shortage of therapeutic α-radiators on the market of medical radionuclides and satisfy increasing demand in the future.

2 cl

FIELD: power industry.

SUBSTANCE: as a target, proposed method uses structured material consisting of molybdenum nanoparticles or its compounds enveloped with a buffer in the form of a solid substance soluble in water or other solvents; at that, d - typical size of nanoparticles is chosen from condition λ/d>>1, where λ - distance of travel in the substance of a nanoparticle of recoil atoms 99Mo. As a result of 99Mo(n,γ)99Mo reaction, recoil atoms are formed, some part of which leaves nanoparticles due to its kinetic energy and is implanted into the buffer enveloping the buffer. After exposure to radiation the target is removed from the reactor, nanoparticles and the buffer is separated with one of known methods. The buffer is supplied for radiochemical processing for separation of a target radioisotope, and molybdenum nanoparticles are returned to the reactor active zone as a part of a new target.

EFFECT: reduction of quantities of radioactive wastes and improvement of use efficiency of fissile material.

6 cl, 1 dwg

FIELD: power engineering.

SUBSTANCE: method to produce a radionuclide bismuth-212 from a nitrate solution containing a mixture of radionuclides thorium-228, thorium-229 and their daughter products of decay, and release of the finished product at an ion-exchange column with cationite. The nitrate solution contains a mixture of radionuclides thorium-228 and thorium-229 and their daughter products of decay, is mixed with ethyl alcohol, this mixture is eluted via the ion exchange column with cationite, where all cations contained in the mixture are absorbed, and as bismuth-212 is accumulated, bismuth-212 is washed by diluted hydrochloric acid.

EFFECT: simplified technological process of production of a radionuclide bismuth-212.

3 cl

FIELD: power industry.

SUBSTANCE: solution containing radionuclides thorium-229, thorium-228 and daughter decay products of these radionuclides is bubbled with gas, thus extracting from them one of daughter radionuclides of thorium-228 - gaseous radon-220. Gas is supplied through aerosol filter to sorption device, and cleaned solution containing mixture of radionuclides thorium-228, thorium-229, as well as daughter decay products of these radionuclides are supplied to radiochemical processing by means ion-exchange resins in order to obtain target radionuclide bismuth-213. As bubbling gas there used is air and/or helium and/or argon and/or krypton and/or xenon. As sorption device there used is hollow volume the dimensions of which provide the residence time of radon-220, which is sufficient for its complete decay to stable radionuclide lead-208, or trap with activated carbon.

EFFECT: reducing the radiation dose intensity in the work area.

4 cl

FIELD: power industry.

SUBSTANCE: solution containing mixture of radionuclides thorium-228 and thorium-229, as well as daughter decay products of these radionuclides is bubbled with gas, thus extracting from them one of daughter decay products of thorium-228 - gaseous radionuclide radon-220. Gas is supplied through aerosol filter to sorption device where as a result of radioactive decay as per chain 220Rn→216Po→212Pb there accumulated is radionuclide lead-212, which, after attainment of saturation of activity of lead-212, is desorbed. The obtained solution is supplied to column with ion-exchange resin from which the daughter decay product of radionuclide bismuth-212 is washed from time to time. As bubbling gas there used is air and/or nitrogen and/or helium and/or argon and/or krypton and/or xenon. As sorption device there used is hollow volume the dimensions of which provide the residence time of radon-220, which is sufficient for its complete decay to radionuclide lead-212, or trap with activated carbon.

EFFECT: reducing the labour intensity of the process and the content of doping radionuclides.

4 cl

The invention relates to the field of nuclear technology
The invention relates to a reactor technology for production of radioisotopes

FIELD: electricity.

SUBSTANCE: metal-dielectric structure and method of its manufacturing are related to electronic industry and electronic engineering and may be used both in modern energy-saving systems and components being an integral part of modern processors, in particular for development of microsized and nanosized electromechanical systems. The metal-dielectric structure consists of dielectric and conducting layers made as an assembly of capillaries filled with metals to the required length, at that conducting layers are etched on selective basis at different butt ends and metalised. The conducting layers are represented by two different types of electroconductive materials etched on selective basis at different butt ends, at that the conductive layers may be made of semiconductor materials, conducting glass, carbon nanoparticles and nanotubes while the dielectric layers may be made of optical and electron-tube glass, polymer materials. In cross-section the dielectric and conducting layers may be made as concentric circles. The manufacturing method for the above metal-dielectric structure includes assembly, overstretching, stacking to the unit, at that upon multiple overstretching vacuum filling with conducting materials is performed, and butt ends are etched on selective basis with different chemical composites and then they are metalised.

EFFECT: invention allows increasing capacitance and breakdown voltage for capacitors.

5 cl, 7 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to pressure sensitive adhesives, suitable for use on a wide variety of substrates, including both high surface energy and low surface energy substrates. Pressure sensitive adhesives comprise an acrylate polymer and surface-modified nanoparticles. The surface-modified nanoparticles comprise a nanoparticle comprising a silica surface and surface modifying groups, covalently bonded to the silica surface of the nanoparticle. At least one surface modifying group is a polymeric silane surface modifying group. At least one surface modifying group is a non-polymeric silane surface modifying group.

EFFECT: disclosure also provides a method of preparing pressure sensitive adhesives, including exposing them to UVA and UVC radiation.

21 cl, 2 dwg, 12 tbl

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to pharmaceutical industry, namely to selenium nanocomposites of natural hepatotrophic galactose-containing polysaccharide matrixes, representing water-soluble orange-red powders containing zerovalent selenium (Se0) nanoparticles sized 1-100 nm in the quantitative content of 0.5 - 60 wt %, possessing antioxidant activity for treating and preventing redox-related pathologies, particularly for treating toxic liver damage, to a method for producing and to an antioxidant agent containing the above nanocomposites.

EFFECT: invention provides the targeted agent delivery to liver cells, as well as higher agent accessibility and lower toxic action of selenium.

7 cl, 11 ex, 4 tbl

FIELD: medicine.

SUBSTANCE: method is implemented as follows: preparing a mixture 1 by adding 0.5M aqueous solution of selenious acid 250 mcl in PEG 400 8 ml, mixing thoroughly in a magnetic mixture at min. 750 rpm with pH of the given mixture 7.55; that is followed by preparing a mixture 2 by adding 0.5M aqueous solution of hydrazine hydrochloride 250 mcl in PEG 400 8 ml, mixing thoroughly in a magnetic mixture at min. 750 rpm with pH of the given mixture 0.68. The mixture 1 is added to the mixture 2 by mixing thoroughly drop by drop. The prepared solution is dialysed against distilled water with removing PEG 400 and hydrazine hydrochloride; the surplus water is distilled off in a rotary evaporator at 60 rpm and 70°C. The prepared solution is added with a low-molecular compound specified in a group of: gentamicin, hexamethylene tetramine, methionine, cephalexin, indole-3-carbinol; pH is reduced to 7.2-7.4. The components are mixed in an amount to provide their content in the agent, wt %: biologically active low-molecular compound 0.001-5.0; selenium 0.0001-1.0; water up to 100.

EFFECT: simplifying the technology.

2 tbl, 3 ex, 1 dwg

FIELD: medicine.

SUBSTANCE: invention refers to medicine and describes a method for producing glucosamine sulphate nanocapsules by non-solvent addition, wherein glucosamine sulphate is added in small amounts to a carrageenan suspension used as a nanocapsule shell in butanol, containing E472c preparation 0.01 g as a surfactant; the produced mixture is agitated and added with the non-solvent hexane 6 ml, filtered, washed in hexane and dried.

EFFECT: invention provides simplifying and accelerating the process of nanoencapsulation in carrageenan and higher weight yield.

2 ex

FIELD: chemistry.

SUBSTANCE: invention relates to field of obtaining nanocomposite coatings and can be used in creation of optic microelectronic devices and materials with increased corrosion resistance and wear resistance. Method of obtaining two-phase nanocomposite coating, consisting of titanium carbide nanoclusters, distributed in amorphous hydrocarbon matrix, on products from hard alloys, includes application of adhesive titanium or chromium sublayer, magnetron sputtering of titanium target in gas mixture of acetylene and argon under pressure 0.01-1 Pa and precipitation of dispersed particles of target and carbon-containing radicals on product surface in combination with bombardment of surface with ions, accelerated by bias voltage, with product surface being subjected to purification with argon ions from plasma, generated by electronic beam, before application of adhesive sublayer, and gas mixture being activated in the process of coating application by impact with beam of electrons with energy 100 eV.

EFFECT: invention is aimed at increase of coating adhesion and micro-hardness of obtained products, as well as at provision of high efficiency of application of acetylene in the process of coating application.

1 ex, 2 dwg

FIELD: chemistry.

SUBSTANCE: catalyst contains carrier from porous zeolite KL and binding agent and catalytically active substance - platinum. Carrier additionally contains tin tetrachloride pentahydrate nanopowder, and as binding agent - mixture of gibbsite and rutile powders in equal proportions, with particle size of each not exceeding 40 mcm. Ratio of ingredients is in the following range, wt %: platinum - 0.3-0.8, mixture of gibbsite and rutile powders - 25-70, zeolite KL - 29.12-74.69, tin tetrachloride pentahydrate - 0.01-0.08. Claimed catalyst is characterised by high activity in reactions of aromatisation of synthetic hydrocarbons.

EFFECT: invention also relates to method of obtaining such catalyst.

2 cl, 1 tbl, 4 ex

FIELD: chemistry.

SUBSTANCE: invention relates to field of nanotechnology, in particular to plant growing, and deals with method of obtaining nanocapsules of 6-aminobenzylpurine. Method is characterised by the fact that 6-aminobenzylpurine is used as core and sodium alginate is used as envelope of nanocapsules, obtained by addition of E472c as surfactant to sodium alginate in butanol, portioned addition of 6-aminobenzylpurine into suspension of sodium alginate in butanol and further drop-by-drop introduction of precipitating agent-petroleum ether after formation of separate solid phase in suspension.

EFFECT: simplification and acceleration of process of obtaining nanoparticles and increased output by weight.

3 ex

FIELD: chemistry.

SUBSTANCE: method includes crushing and fractioning of initial material, delignification of initial raw material by alkaline hydration and alkaline pulping with further washings. After that, two-stage acidic hydrolysis with intermediate neutralisation and three washings is performed. Then, three-stage bleaching with hydrogen peroxide H2O2 with three washings is carried out. In second washing finely dispersed ozone is supplied. Obtained product is additionally subjected to homogenisation and drying. Invention makes it possible to obtain final product with virtually absolute absence of lignin, with high organoleptic and physical and chemical properties from lignin-containing initial material.

EFFECT: method does not require application of expensive equipment, does not involve application of highly toxic reagents, includes simple technological operations, is characterised by production scalability.

3 cl, 3 dwg, 1 ex

FIELD: medicine.

SUBSTANCE: invention describes a method for producing Sel-Plex nanocapsules possessing the supramolecular properties by non-solvent addition, characterised by the fact that Sel-Plex is dissolved in dimethyl sulphoxide; the prepared mixture is dispersed in xanthum gum solution used as a nanocapsule shell, in butanol, in the presence of E472c preparation while stirring at 1000 cycles per second; the mixture is added with the precipitator benzol, filtered and dried at room temperature.

EFFECT: simplifying and accelerating the process of nanoencapsulation and ensuring higher weight yield.

4 ex, 12 dwg

Magnetic materials // 2244971

FIELD: magnetic materials whose axial symmetry is used for imparting magnetic properties to materials.

SUBSTANCE: memory element has nanomagnetic materials whose axial symmetry is chosen to obtain high residual magnetic induction and respective coercive force. This enlarges body of information stored on information media.

EFFECT: enhanced speed of nonvolatile memory integrated circuits for computers of low power requirement.

4 cl, 8 dwg

Up!