Underwater hydrostatic power plant

FIELD: power engineering.

SUBSTANCE: underwater hydrostatic power plant comprises a cylindrical vessel divided into compartments and fixed to the bottom of the water reservoir, closed at the ends by covers with inlet and outlet nozzles, equipped by barrier lattices and valves. Inside the cylindrical vessel along with water flow the following components are serially installed: a filtration compartment, where a perforated container is placed, filled with filtering medium; a buffer compartment, filled with filtered water; a power generator compartment, in which a power generator is installed, electric slots, electric cables, automatic control and monitoring equipment, a control transformer, a start accumulator and discharge pipes; a turbine compartment, where a hydraulic turbine is installed with a horizontal shaft and a suction pipe, connected via the shaft with a power generator rotor and via discharge pipes with the buffer compartment; a spent water removal compartment, where the perforated container is placed, filled with porous, mechanically strong, corrosion-resistant material, and a latticed electric water heater arranged near the edge of the outlet end of the perforated container.

EFFECT: increased efficiency of an underwater hydrostatic power plant during utilisation of potential water energy of deep-water reservoirs.

3 dwg

 



 

Same patents:

FIELD: power industry.

SUBSTANCE: invention relates to hydropower engineering, namely to hydroelectric power plants. A run-of-river hydroelectric power plant 2 is installed on a basement 26 and contains several rigid, water-tight housings 6 with an elliptic cross section fitted with turbine modules 8 arranged with a possibility of transmission of rotation from shafts 13 enclosed by a ring 27, turbines 12 through free-wheeling clutches 14 to the common shaft 15 passing through an onshore well 21 with the ground river water circulating in it through a reducer 16 to the rotor shaft of an electric generator 17 installed on the shore 3. In each turbine module 8 the plane of rotation of the turbine 12 blades is inclined at an angle to the longitudinal axis of the flow 1, in the zone of the hub 18 of the turbine 12 to which blades are fastened. On a guiding lattice 11 located upstream the turbine 12 a cone-shaped body 25 is installed with the top oriented upstream. From the back side on the hub 18 of the turbine 12 a hemispherical body 19 is installed. Upstream and downstream the turbine module 8 a shutoff device 7 is installed.

EFFECT: invention is aimed at providing of extraction of the maximum possible part of kinetic energy of water, which freely flows in the river, for its conversion into electric power.

21 cl, 9 dwg

FIELD: power industry.

SUBSTANCE: beam (8) for attachment of fairing (2) of hydro-electric power plant (1) has a cross section in a plane perpendicular to longitudinal axis (A8) of beam (8) in the form of a parallelogram. Beam (8) includes at least one slot that mainly passes parallel to longitudinal axis (A8) of beam (8). In the cross section perpendicular to longitudinal axis (A8) of beam (8), traces of the surfaces located along the slot pass from one of the sides of large sizes of the cross section to the adjacent side of small sizes of the cross section. Hydro-electric power plant (1) includes wheel (3) that can be rotated about axis (X1), fixed fairing (2) enveloping the wheel, and at least one beam (8) for attachment of the fairing, which attaches the fairing to central support (6) of the hydro-electric power plant.

EFFECT: geometrical shape of an attachment beam allows restricting Karman vortexes and even preventing their formation at action on the beam of water flow during operation of a hydro-electric power plant.

10 cl, 7 dwg

Hydraulic unit // 2549753

FIELD: electricity.

SUBSTANCE: hydraulic unit contains the hydraulic turbine and the electric generator. The channel of the hydraulic unit housing is formed by a surface of the channel of the electric generator rotor to which the ends of vanes of the hydraulic turbine rotor are rigidly fastened. The rotor of the electric generator contains the barrel with a cylindrical ledge in which the ring groove with magnetic system is made. The external surface of the rotor forms the working gap with the surface of the cavity of the laminated core of the stator fitted with grooves in which the winding coils fixed by wedges are laid. The stator with windings is placed in a tight cavity of the housing. The working gap of the rotor is tightly separated from the named housing cavity. The housing includes boards, detachably and tightly fastened to the cylindrical housing, and its internal surface is fitted with a groove in which the package of cores of the stator fitted on end faces with press sheets and fixed by a split ring is placed. Between sidewalls of the cylindrical ledge and the surfaces of boards the thrust bearings are installed. Between the end surfaces of the rotor and surfaces of cylindrical holes of boards the radial bearings are installed. The volume inside which the radial bearings are installed, is pressurised from a gap between the inlet and outlet channels and the housing channel.

EFFECT: increase of service of the hydraulic unit and its electric generator.

3 cl, 4 dwg

FIELD: power engineering.

SUBSTANCE: invention relates to hydraulic power plants and methods of power production. The main element of the hydraulic power plant is aerodynamic surface in the form of a wing, in the body of which there is a channel that connects opposite surfaces of a wing. Water sucked into this channel rotates the turbine and the power generator connected to it. The plant may be stationary or mobile.

EFFECT: design improvement.

9 cl, 14 dwg

FIELD: power industry.

SUBSTANCE: invention can be used in hydraulic power industry as an energy conversion device of a gravity water flow to electrical energy. A damless hydro-electric power plant includes a blade wheel and a housing installed on a support. The central vertical part of the housing is made in the form of a hollow sealed cylinder filled with water or air when necessary. The horizontal part of the housing, which is rigidly attached to a cylinder, represents a truss, on which there arranged is an annular track for support rollers of a bladed wheel, a bladed wheel rotated about the hollow cylinder, a support of driven sprocket 6 of the first stage of a kinematic circuit for transmission of revolutions from the bladed wheel to an electrical energy generator, side enclosures functionally performing a role of input and output diffusers A, B.

EFFECT: invention is aimed at improvement of an efficiency factor, simplification of a design and increase of unit power.

4 cl, 2 dwg

FIELD: power industry.

SUBSTANCE: method of flowing medium energy utilisation involves guiding a fluid medium flow to diffuser 11 where the flow is accelerated and then fed to duct 3 where it is additionally accelerated due to gradual duct 3 cross-section reduction, further conversion of kinetic flow energy into mechanical power by guiding the flow to at least one work wheel 5 with blades 6, installed in the duct 3, and further deceleration of the flow. Blades 6 of the work wheel 5 are tapered in width from inlet towards the outlet edge, side surface of the blades is convex, and outlet edge is shifted against inlet edge.

EFFECT: increased flowing medium energy utilisation rate.

7 cl, 3 dwg

FIELD: power generation.

SUBSTANCE: invention relates to power plants and particularly to an apparatus for improved hydropower generation at existing impoundments. An apparatus for generating power through water impoundment comprises a frame 60, configured for transportation and installed in or connected to the water impoundment, a group of power generating cells placed in the frame 60 in multiple predetermined positions. The cells comprise selectively detachable, interlocked, stacked modules, vertically mounted in the frame and including a generator module 62 and a turbine module 68. The modules are interchangeable at different positions in the frame 60 without interrupting power generation in other cells. The cells are installed to obtain energy resulting from water impoundment. The cells are configured to convert the said energy by passing water through a turbine and rotating the turbine in each cell.

EFFECT: invention is aimed at designing a power generating apparatus with a variable configuration.

19 cl, 15 dwg

FIELD: power industry.

SUBSTANCE: movable flow-through hydraulic power station contains pontoon 1, fixed with anchors 2, body of water pipeline, hydraulic drive, electric current generator, control mechanisms. Body is made in the form of two hollow cylindrical pipelines 5 and 6 arranged coaxially one after another. First of the pipelines of larger section is turned by its free front end towards the water stream, the rear end of which is connected by means of cone hollow insert 7 to the front end of the pipeline of smaller section, the second end of which is open. Body is mechanically coupled with the energy unit 8. Hydraulic drive and electric current generator, the shafts of which are interconnected, are located inside this unit. Body and energy unit are attached to the bottom of the pontoon 1. Pressure tube 46, made in the form of Pitot tube, the free bent end of which is turned towards the moving water stream, and the other end through the stopcock 47 is connected to the inlet tube of turbine of hydraulic drive and its outlet tube is connected to the interior cavity of housing of minor section, is installed inside the housing of larger section.

EFFECT: design simplification, increase of efficiency, improvement of air-tightness and increase of quantity of power supplied to the consumer.

8 dwg

FIELD: energy.

SUBSTANCE: hydroelectric power station comprises a pipe-water passage 2 with a hydraulic turbine 6 mounted in it, connected to the generator 7. The pipe-water passage 2 is mounted in the water reservoir and laid on the bottom of the water reservoir to the platform 8 attached to the coast. The pipe-water passage 2 is additionally provided in the upper part, which rises above the water reservoir level, with the axial pump 9 with a controllable pitch propeller. The hydraulic turbine 6 is mounted in the lower part of the pipe-water passage. The pipe-water passage 2 is fixed at the bottom of the water reservoir and has the openings 4 for entry of water. The energy complex consists of several hydroelectric power stations united by the common platform and having the necessary capacity adjustable by turning on and off the pumps.

EFFECT: group of inventions enables to produce electrical energy in different climatic conditions, with the possibility of increasing the unit capacity by increasing the length of the waterfront of the hydroelectric power station.

8 cl, 5 dwg

FIELD: power industry.

SUBSTANCE: transferred medium, air inlet is made in the form of knee pipe, vertical part of which is rigidly attached in ice and faces air, while horizontal part with a diffuser is located under ice along water flow. Air intake with ventilator and generator plant inside is tightly attached to the loose end of vertical part of knee pipe.

EFFECT: simple hydro-electric plant applicable for electric power generation from hydraulic energy of river flow under ice.

2 cl, 1 dwg

FIELD: power industry.

SUBSTANCE: conveyor-type hydraulic power station contains guide channel, actuating device with flexible element in form of closed chain-drive comprising connected with each other links-carriages with blade units, each contains symmetrical blade pairs. The guide channel contains main and secondary channel, its output is equipped with shutter. Each channel is divided to the contraction, work and diffuser parts. Each blades pair includes vertically oriented small and large blades. Large blades are secured on axles provided with rollers, and small blades are connected with each other and with large blades by means of the horizontally oriented arc-like jumper-blade. At that if the guide channel contains one secondary channel, then the later is located above the actuating device, and if several secondary channels, then they are arranged along the main channel from both sides. The secondary channels are connected with each other and with main channel by means of the tapering branches and windows equipped with shutters and guide partitions that guide the flow to the main channel and installed before the windows inside the main channel at angle to the casing.

EFFECT: increased power of hydraulic power station.

3 cl, 9 dwg

FIELD: power industry.

SUBSTANCE: invention relates to hydropower engineering, namely to hydroelectric power plants. A run-of-river hydroelectric power plant 2 is installed on a basement 26 and contains several rigid, water-tight housings 6 with an elliptic cross section fitted with turbine modules 8 arranged with a possibility of transmission of rotation from shafts 13 enclosed by a ring 27, turbines 12 through free-wheeling clutches 14 to the common shaft 15 passing through an onshore well 21 with the ground river water circulating in it through a reducer 16 to the rotor shaft of an electric generator 17 installed on the shore 3. In each turbine module 8 the plane of rotation of the turbine 12 blades is inclined at an angle to the longitudinal axis of the flow 1, in the zone of the hub 18 of the turbine 12 to which blades are fastened. On a guiding lattice 11 located upstream the turbine 12 a cone-shaped body 25 is installed with the top oriented upstream. From the back side on the hub 18 of the turbine 12 a hemispherical body 19 is installed. Upstream and downstream the turbine module 8 a shutoff device 7 is installed.

EFFECT: invention is aimed at providing of extraction of the maximum possible part of kinetic energy of water, which freely flows in the river, for its conversion into electric power.

21 cl, 9 dwg

FIELD: construction.

SUBSTANCE: invention may be used in applied hydroacoustics for provision of safety (industrial and environmental) of hydraulic engineering structures (HES) of high hazard facilities: nuclear power plants (NPPs), hydraulic power plants, heat power plants, tidal power plants, offshore oil and gas platforms, etc. In particular (with regard to NPPs) for: protection against penetration into a water supply channel (WSC) 2 of above-water (AWSC) 12 and underwater (UWSC) 13 subverter carriers, as well as underwater subverters (UWS) 11 themselves; protection of mature fish (MF) 14 and young fish (YF) 15 against ingress into the water supply channel (WSC) 2 and directly into a water intake window (WIW) 4; treatment of water from mechanical (MA) 17 and biological (BA) 18 admixtures and biogrowths (BG) 16; acoustic degassing of water. The method consists in physical retaining of AWSC, SWSC and UWS by formation of a combined air bubble curtain at the inlet to the water supply channel 2, sharp reduction of density of water medium and subsequent dropping of the AWSC 12, SWSC 13 or directly the UWS 11 itself to the bottom. Mechanical retention of AWSC 12 is carried out by means of installation of a power boom containment at the inlet and across the water supply channel 2 and subsequence damage of the AWSC 12 body. Multi-stage and combined acoustic displacement of UWS 11 is carried out, as well as multi-stage and combined non-lethal damage of UWS 11, and multi-stage and combined displacement of fish 14, including young fish 15. Combined treatment of water from mechanical admixtures 17, biological admixtures 18 and biogrowths 16 is carried out at the inlet to the water supply channel 2, as well as multi-stage and combined acoustic immobilisation and acoustic destruction of biogrowths 16. The method also includes acoustic degassing of water at the outlet from the water supply channel 2 - in the area of the water-intake window 4.

EFFECT: invention provides for required safety of NPP HES.

11 dwg

FIELD: power industry.

SUBSTANCE: beam (8) for attachment of fairing (2) of hydro-electric power plant (1) has a cross section in a plane perpendicular to longitudinal axis (A8) of beam (8) in the form of a parallelogram. Beam (8) includes at least one slot that mainly passes parallel to longitudinal axis (A8) of beam (8). In the cross section perpendicular to longitudinal axis (A8) of beam (8), traces of the surfaces located along the slot pass from one of the sides of large sizes of the cross section to the adjacent side of small sizes of the cross section. Hydro-electric power plant (1) includes wheel (3) that can be rotated about axis (X1), fixed fairing (2) enveloping the wheel, and at least one beam (8) for attachment of the fairing, which attaches the fairing to central support (6) of the hydro-electric power plant.

EFFECT: geometrical shape of an attachment beam allows restricting Karman vortexes and even preventing their formation at action on the beam of water flow during operation of a hydro-electric power plant.

10 cl, 7 dwg

FIELD: power industry.

SUBSTANCE: invention refers to hydroelectric power industry, particularly to methods of small river and artificial flow utilisation for electric power generation. Method of midget hydroelectric power plant construction involves construction of hydroelectric aggregates in the form of converters of kinetic water flow energy to potential hydraulic shock energy, and rotating drive of electric power generators. Water ducts of hydroelectric aggregates feature walls moving in radial direction and injectors with actuators driven in reciprocal motion by water duct walls moving in radial direction. Electric power generator drive is made in the form of propellers rotated by energy transferred from injectors to propellers by intermediate energy carrier, a work medium other than water.

EFFECT: simple method of midget hydroelectric power plant construction in low-intensity water flows.

4 cl, 1 dwg

FIELD: power industry.

SUBSTANCE: at implementation of a construction method of OTPP combined with SP 1, all the component parts of the object being built in the form of ready-made reinforced concrete or metal blocks from the works to the assembly site are delivered by means of a float-on method. Sequence of construction work is started from an earlier installed supporting and restricting barrier consisting of a metal, reinforced concrete or wooden grooved pile projecting in an underwater position through the height sufficient for fixed retention of flooded threshold blocks with orthogonal turbines 4, including foundation of SP 1. First, assembly of the foundation is started by afloat attachment into a common structure of a rectangular shape, the margin of buoyancy of which is sufficient for retention of posts for laying of board panels. Assembly of SP 1 is completed by installation of double-leaf gate 7. Gate 7 is left open till completion of work on installation of threshold blocks with turbines 4 connected through shafting 5 to generators 6 installed on the shore.

EFFECT: construction of HPP on navigable rivers, where it is impossible to erect dams and flood gates as per local conditions.

3 cl, 2 dwg

FIELD: power engineering.

SUBSTANCE: pumped storage plant on plain streams comprises riverbed hydraulic power units, including axial pumps, which are rotated by riverbed water wheels via multipliers. Riverbed hydraulic power units serve for filling of an upper accumulating pond made in the form of a water reservoir with dam walls along the perimeter. Upper and lower accumulating ponds are connected to each other by discharge pipelines with pumps-turbines in the lower part connected mechanically with electric motors - generators in a turbine room. The upper accumulating pond covers a river bed by half.

EFFECT: prevention of flooding of plains and land plots, free navigation and fish passage along entire length of a river, increased depth of a fairway and higher speed of water flow.

5 cl, 11 dwg

FIELD: construction.

SUBSTANCE: method includes development of the first 28 safety border and the first physical protection 36 against penetration of biological underwater objects (BUO) and facilities of their delivery, the first treatment of return service water 37 from mechanical (MA) and biological (BA) admixtures, the first protection of fish, including young fish, the first cooling of return service water. The second 29 safety borders are established, identical to each other and similar in purpose at the inlet of each water supply canal and subsequent supply: the second physical protection 39 against penetration of BUO, the second treatment of return service water from MA and BA, the second protection of fish, the second cooling of return service water. The third 30 safety borders are established, identical to each other, at the inlet to water intake windows and subsequent supply: the third physical protection against penetration of BUO, the third treatment of return service water from MA and BA, the third protection of fish, the third cooling of return service water and its first acoustic degassing. The fourth 31 safety borders are established, identical to each other, at the outlets of water supply canals identical to each other and subsequent supply: the fourth physical protection against penetration of BUO, the fourth treatment of return service water from MA and BA, the fourth protection of fish and the fourth cooling of return service water. The fifth safety border 32 is created in the common water drain canal and subsequent supply of the fifth physical protection against penetration of BUO and facilities of their delivery, the fifth treatment of return service water from MA and BA, the fifth protection of fish, especially in the period of their spawning, and the fifth cooling of return service water.

EFFECT: distant detection, valid classification and accurate identification of spatial coordinates of acoustically barely visible BUO under conditions of higher surrounding noise of anthropogenic and natural character, intensive reverberation at distant detection, hydroacoustic displacement of BUO, failure of management systems of underwater carriers of BUO, mechanical protection of a border against penetration of above-water and underwater carriers of BUO, multi-stage treatment of water from MA and BA, multi-stage cooling of water, used for process purposes, environmental safety.

12 dwg

FIELD: energy.

SUBSTANCE: hydroelectric power station comprises a pipe-water passage 2 with a hydraulic turbine 6 mounted in it, connected to the generator 7. The pipe-water passage 2 is mounted in the water reservoir and laid on the bottom of the water reservoir to the platform 8 attached to the coast. The pipe-water passage 2 is additionally provided in the upper part, which rises above the water reservoir level, with the axial pump 9 with a controllable pitch propeller. The hydraulic turbine 6 is mounted in the lower part of the pipe-water passage. The pipe-water passage 2 is fixed at the bottom of the water reservoir and has the openings 4 for entry of water. The energy complex consists of several hydroelectric power stations united by the common platform and having the necessary capacity adjustable by turning on and off the pumps.

EFFECT: group of inventions enables to produce electrical energy in different climatic conditions, with the possibility of increasing the unit capacity by increasing the length of the waterfront of the hydroelectric power station.

8 cl, 5 dwg

FIELD: power engineering.

SUBSTANCE: hydraulic power plant of conveyor type submerged into a fluid medium comprises a frame with at least two pairs of guides and shafts installed on it at the opposite sides as capable of rotation. One of the shafts is kinematically connected with a power generator. A flexible element that embraces the shafts is made in the form of a closed chain gear with fixed blades equipped with axes and rollers. The hydraulic power plant is placed in a channel equipped with gateways along the flow with partial submersion of the body into the fluid medium. The flexible element comprises joined links-carriages with combined blades, which consist of at least four V-shaped plates arranged in pairs opposite to each other. Plates in each pair are parallel to each other. Shafts are placed at different levels, and wheels are installed at their ends. Wheels of the shaft arranged below are made as geared and of smaller diameter compared to wheels of the other shaft. The shaft with wheels of the smaller diameter is arranged upstream compared to the shaft with wheels of larger diameter.

EFFECT: increased reliability and capacity of a hydraulic power plant.

4 cl, 6 dwg

FIELD: hydraulic and hydropower engineering, particularly for building water-retaining structures to provide power supply to small settlements and farms.

SUBSTANCE: method involves assembling flexible apron assembly consisted of flexible floor apron and flexible downstream apron in watercourse; securing thereof to watercourse bottom by anchors. Water outlet assembly including hydroelectric generator arranged inside it is secured to floor apron and downstream apron by rigid ties. Connected to water outlet assembly by ties are water retaining shell and rope system secured to anchor poles located on watercourse bank.

EFFECT: reduced time of structure assembling and costs for electric power generation.

2 dwg

Up!