Development of productive depths in urbanised territory and subsurface facilities to this end

FIELD: mining.

SUBSTANCE: claimed process comprises the selection of mineral extraction location proceeding from geological conditions of ore occurrence, well drilling and development. Hydraulic borehole mining is executed at underground heading, i.e. at ore occurrence stope. The stope worked volume is filled by overlying rock failure. At the selection of the hard mineral working location additionally considered are the local requirements and constraints in operation of given site of urbanised territory. Geotechnological wells are drilled and developed to a hexagonal cell. Extraction of hard minerals and failure of overlying rock massif are performed inside the depth volume confined by a right hexagonal parallelepiped. The latter is composed by encase wells drilled from the surface to rock deposit bottom. A complete backfilling of worked space comprises the slot cut of side panels of hexagonal massif of rock overlying the stope roof from the rock massif surrounding the aforesaid cell. This causes the self-failure of rock within the boundaries of the hexagonal parallelepiped and the formation of a new overlying hexagonal cavity.

EFFECT: possibility of underground local ore working under conditions of territory development and simultaneous formation of underground cavity.

2 cl, 5 dwg

 



 

Same patents:

FIELD: mining.

SUBSTANCE: method for hydromechanical benefication involves drilling of production wells, water-jet destruction of a mineral deposit in extraction chambers of the deposit with its changer over to a movable state as a part of a hydraulic mixture, hydraulic lifting via the well to day surface from extraction chambers of the hydraulic mixture in the form of pulp, hydraulic transportation of pulp to a benefication place, and gravitational benefication of the mineral deposit in water medium. Destruction of the deposit is performed during formation of an extraction chamber with a vertical symmetry axis in the form of a rotation figure: cylinder, cone or ball, thus creating a circular flow of coal hydraulic mixture, which is swirled about the vertical symmetry axis, and depositing foreign heavy inclusions and sand at the bottom of the extraction chamber in the created hydraulic cyclone. Suction of coal hydraulic mixture is performed from the level above deposit level; turbulent hydraulic transportation of pulp from the extraction chamber to the place of its preparation for benefication is performed via pipelines. Hydromechanical treatment of pulp is performed so that a brown coal suspension is performed. Target products are obtained in the form of a concentrate of humic acids and a concentrate of bitumens by tangential supply of the flow of the brown coal suspension to a conical sedimentation basin, filling of the sedimentation basin with further settlement of the brown coal suspension and staged pumping-out of highly disperse fractions that are settled subsequently with their supply to different accumulation tanks for collection of target products and benefication tailings. The processing line implementing this method consists of three sections - borehole hydraulic mining, hydraulic transportation and benefication - subsequently dispersing brown coal till fineness.

EFFECT: implementation of staged production of target products.

4 cl, 2 dwg

FIELD: mining.

SUBSTANCE: development method comprises opening-up of developed field reserves, ditch driving along the whole length of the production block, water flooding of the production block for disintegration of clay sand and their subsequent improvement by the production complex with installation of pressure of head hydraulic transportation and concentration plant. Before grooving of slits by cross-cut and longitudinal passes of slit-cutting unit, and also water flooding of the production block for disintegration of clay sand and their subsequent improvement, using experimental and analytical methods the bending compression and tension characteristics of high clayey sands in various locations of placer deposits are determined. The dynamics of change of elastic characteristics in these sections is determined, the correlation of response curve of resiliency of sand at water saturation of separate sections of the field with the relative wave resistance of sand in these sections is studied, and grooving of cracks at the distance from each other depending on the change of response curve of sand resiliency of at water saturation is performed.

EFFECT: achievement of high level of disintegration of clay sands difficult for wash-out, minimising of process losses of valuable component and decrease of mining expenses.

3 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining and can be used at mining operations. Proposed method comprises drilling the row of test wells to fit downhole hydromining units therein and to washout minerals therefrom by fluid jets forced by said units for pulp to be delivered to surface. Drilled pipes are inclined in the plane perpendicular to spread of said row. Wells are drilled in a row to distance equal to double efficient length of washout jet while rows are spaced apart through distance equal to efficient length of washout jet. Washout is performed from wells towards hanging layer to form the face with hemispherical cross-section perpendicular to well axis.

EFFECT: reliable egress of minerals, washout at dried face.

3 cl, 9 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining and can be used for hydraulic process of coal production. Main and auxiliary openings are driven via tandem and/or single faces that delineate blocks, barrier and safety pillars. Water is forced into faces by pump stations after cleaning at drainage complexes, mechanised settlers and/or water headers. The latter are located in intercommunicated chambers located at lower points of hydraulic site blocks and exiting into accumulation openings via which hydraulic transport is performed and rock is discharged. Abandoned pillars are liquidated after working of extraction pillar at backstroke in tow-side or single-side cuts. Water is cleaned at mechanised settlers and/or water headers with application of combination of water cleaning technical means and processes. For this, used are, for example, water impermeable partitions with water bypass nearby bottom, thin-layer clarifiers, flotation, coagulation, water processing by constant pulsating current, etc.

EFFECT: working of coal at complex mining and geological conditions, lower costs.

4 cl, 2 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining and can be used for hydraulic borehole mining of minerals. Proposed method comprises opening of the deposit via central and peripheral wells, placing the equipment therein and opening of adjacent chambers in layers, from bottom to top, starting from peripheral chambers. Prior to opening of the next layer through the entire bed thickness, undercut chamber is formed nearby soil of formed chamber and, parallel with said layer, of artificial ceiling of hardening material with inclination to centre. Shrinkage of fallen rock and filling of opened space with hardening material, opening and backfilling of central chamber at development of every chamber. After making of said artificial ceiling, several hydraulic cuts are made over the height of temporary wells. After formation of undercut space, rocks are hydraulically fractured from lower hydraulic cuts to force fluid into fracture unless rock failure into undercut space. Caved rock is partially flooded by hydraulic fracture fluid and giants to wash out the rock. As rock disintegrates, pulp is fed to the surface. As magazine level drops below design mark, hydraulic fracturing is repeated from hydraulic cut closest to stripped area, shrinkage, wash-out and discharge of pulp. Then, said jobs are repeated unless stripped area reaches aforesaid artificial ceiling. Now, shrunk rock is completely washed put, pulp is discharged and stripped area is filled.

EFFECT: selective extraction, decreased losses of minerals and costs, lower environmental effects.

8 cl, 5 dwg

FIELD: mining.

SUBSTANCE: proposed method comprises exposure of producing formation by production well equipped with jetting equipment and jetting of minerals. Nearby soil of developed strata horizontal drain hole is drilled for preliminary drying of working zone and creating conditions for operation of jetting in air. Note here that minerals are broken by jetting, gravity and increasing rock pressure resulted from underground water level decrease. This allows mining the minerals at strength of 3-5 MPa. Light grade well is drilled in vertical plane with drain well inclined to mouth to allow outflow of hydraulic mix by gravity and accumulated in settler. Operation of wells of hydromining complex is performed in turns. First, drain well is activated. After water level drop below giant jet nozzle, giant jet is activated. Minerals are mined by intervals in direction from bottom to mouth of operation well and with withdrawal of casing tubes.

EFFECT: higher efficiency of hydromining.

1 dwg

FIELD: mining.

SUBSTANCE: device comprises a machine with a hydraulic drive of reciprocal and return-rotary displacement, a two-channel tubular frame, a jet working element, a system to supply and distribute discharge liquid. The working element is equipped with the main and auxiliary jet-forming shafts with attachments and separated channels of discharge liquid supply to them. The main shaft is installed at the angle of 90, and auxiliary shafts - at the angles of accordingly 45 and 3-10 to the longitudinal axis of the working element. Supply of the discharge liquid to channels is adjusted to a two-position distributor installed on the shaft of the hydraulic drive of return-rotary displacement.

EFFECT: simplified design, increased reliability of design, increased safety and efficiency of labour.

4 cl, 3 dwg

FIELD: mining.

SUBSTANCE: first preparatory field mines are driven - level haulage and ventilation drifts with identical geodetic elevations, block crossdrifts and accumulating drifts with an inclination for a self-flow transport, stripping wells are drilled at the right angle to the bed plane, then, line cuts are washed by the hydraulic method. Level haulage and ventilation drifts stretch at identical geodetic elevations to form a ventilation scheme with horizontal depression. The area of line cuts is increased to initiate the process of caving of a hanging massif in a stope. The stope bottom is formed by washing of line cuts with an inclination providing for accumulation of caved coal through self-flow. The caved coal is magazined to control shift of side rocks in the stope. Chambers that are adjacent to the mined space are separated by barrier sight pillars. Oversize material is crushed, and coal mass is periodically discharged in dosing manner into the accumulating drift to provide for stope bottom movement up the pitch.

EFFECT: elimination of air leaks through a mined space, reduced contamination of coal by caved rocks, higher reliability of breaking face functioning and labour safety.

2 dwg

FIELD: mining.

SUBSTANCE: system capable of using naturally reheated fluids produced from hydrothermal channels with the purpose to develop and use practically unlimited quantity of thermal energy contained in specified fluids. The system comprises the main system made of three parts: a funnel, pipe sections and any combination of several mechanical fixtures. The extracted thermal energy is used to drive steam turbines or other equipment for generation of power, which is transported to earth surface, water desalination or for any other production, requiring thermal energy. Besides, the specified thermal energy may simultaneously or separately be introduced into the extracting plant for extraction of resources in order to extract precious metals, mineral and chemical substances without system modification.

EFFECT: provision of a reliable mechanism for extraction of thermal energy from an ocean bottom and such precious resources as minerals, metals and chemical substances.

37 cl, 5 dwg

FIELD: mining.

SUBSTANCE: method includes exposure and development of reserves by open-cut method, exposure, preparation and working-out the reserves in cut edges by underground method, transportation of rock mass and maintaining protective pillars. When eliminating the front of open mining at safety distance there performed is an exposure of underground mining unit in cut edge that includes several beds. There passed are ventilation and pulp-haulage drift ways that are cut by pulp-haulage roadway, and from the surface there drilled are wells along coal beds till pulp-haulage roadway. Broken working is done from well upwards and downwards by hydraulic or drill-hydraulic methods, and pulp transportation is done by wells and pulp-transportation mines till draining complex.

EFFECT: invention allows increasing the coefficient of mineral resources extraction and reducing environmental losses.

6 cl, 2 dwg

FIELD: mining.

SUBSTANCE: method includes drilling of the single down wells with placement there of explosive charges, consecutive detonation of single down wells and formation of a compensation crack along the contact ore - rock with formation of a concave exposure surface in solid ore, rows of concave wells in the ore cavity are arranged in congruent manner to a concave exposure of the compensation crack at the distance equal to the least resistance line, the last row is arranged along the line of the contact ore - rock, rings of wells are drilled with insufficient drilling 1 m to the contact ore - filling, finally the rows of rings of wells are drilled at the boundary with the compensation crack, in the wells the explosive charges are placed with insufficient charge, rows of rings of wells are blasted with delayed action to the surface of exposure of the compensation crack, and finally a row of rings of wells at the contact ore - rock is blasted.

EFFECT: invention allows to improve safety and efficiency of conducting explosive works.

3 dwg, 1 ex

FIELD: mining.

SUBSTANCE: invention relates to a method for prevention and control of sudden zonal emissions of coal and gas from coal beds. A method for prevention and control of sudden zonal coal and gas emissions, according to which a mining area is divided into mining zones (5) by distribution of defects and corrugations in a deposit so that boundaries of mining zones are located as far as possible in axial parts of defects or corrugations. Direction of maximum stress is determined in soil along horizontal direction in mining zone (5) by a conventional test method of stress in soil. With that, when an adjacent angle between the measured direction of maximum stress in soil along the horizontal direction and a coal bed passage line is less than 45, inlet ventilation opening (4) and ventilation opening (3) for a backward jet is located for the mining zone along the coal bed passage line. Then, strike entry driving is performed, and inlet ventilation opening (1) and ventilation opening (2) for the backward jet is located for a working face along the coal bed passage line so that there can be performed mining operations in working face (6) located along the coal bed passage line. When the adjacent angle between the measured direction of maximum stress in soil along the horizontal direction and the coal bed passage line is more than 45, inlet ventilation opening (4) and ventilation opening (3) for a backward jet is located for the mining zone along the coal bed passage line. Then, strike entry driving is performed, and inlet ventilation opening (1) and ventilation opening (2) for the backward jet is located for a working face along the coal bed passage line. And then, strike entry driving is performed so that there can be performed mining operations in working face (6) located along coal bed inclination.

EFFECT: simplifying the method, obtaining a favourable effect of prevention of sudden emissions and reducing concentration of stress in a working face.

2 dwg

Transfer of muck // 2539090

FIELD: mining.

SUBSTANCE: proposed process comprises breaking of rock by combine, loading of the into self-propelled car, its transfer from working zone scraper conveyor, transfer to ore-pass well and discharge to main conveyor. Scraper conveyors are arranged in parallel nearby each other. Note here that conveyor unloading fights are arranged above ore-pass wells while conveyors are timed. Quantity of parallel conveyors allows the width of discharge surface for locating of crushed ore without fall on working soil.

EFFECT: higher efficiency of combine working.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: this method consists in development of the set of coal seams in ascending order in system "Long direction of strata" with excavation. Rock pressure is control by collapsing the roof rocks in exposed space with subsequent isolation. Note here that first the set bottom seam is mined with advance degassing and continuation of gas suction therefrom at mining of overlying undermined seams. Then, overlying seams are mined in ascending order. Note here that mine fluids are collected from the entire set of coal seams at bottom seam bottom point at its mining with the feed of aqueous solution of antipyrogenes into stripped area. After working of bottom seam advance seam degassing is terminated. Barometric pressure is maintained in worked space by discharging fluid gases from sources below the set. Note here that advance degassing in overlying seams is not used at stripping. Besides, feed of aqueous solution of antipyrogenes into stripped area is performed from bottom seam into stripped area of every of the next stripped coal seams.

EFFECT: higher safety, lower costs.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: proposed method comprises mechanised pre-working and stabilisation in coal massif, protection of opened space against adjacent column by coal post. Compensation cavities are made in virgin massif, nearby bed soil, and separated by coal post. Cavities and coal posts there between on massif side and opened space are arranged in staggered manner. Width, height and depth of cavities are defined on the basis of coal seam mining and geological conditions and heading machine performances. Coal post width between compensation cavities is calculated with due allowance for empirical factor equal to 1.3 at working in virgin massif and equal to 1.6 at working in adjacent column abutment pressure zone, seal depth (post height) and seam cubical compression strength.

EFFECT: higher stability of working, lower losses of coal in posts, no need in additional barring.

3 dwg

FIELD: oil and gas industry.

SUBSTANCE: double-ended method of the deposit opening during underground operations includes shaft sinking of at least two holes, each hole having its own job site. Opening of the deposit is made by underground horizontal and/or inclined workings from each hole. As the shaft sinking progresses the underground horizontal workings are made from the hole at a distance of at least 5 diameters of the hole. Vertical wells are drilled from the surface and horizontal cuts and when the lower horizontal working is reached the well is drilled up to the project diameter of the air raise. Horizontal workings are placed vertically, one by one, at a distance to be determined by technical capabilities of the drilling rig. The upper part of the air raise is made from the surface through quaternary deposits by a usual method. At the first stage each end of the deposit is ventilated separately, at the second stage fresh air is supplied through a pair of combined developments - a borehole and the air riser at one end while outgoing jet is outputted through the combined developments of the other end.

EFFECT: method allows reducing scope of works during shaft sinking, increasing the sinking rate, reducing the period of construction and commissioning of a mine or minery, increasing reliability of ventilation due to ventilation risers.

3 dwg

FIELD: mining.

SUBSTANCE: method involves formation of lower slashing of formation by means of a plough unit with movement into it of a hauling conveyor, cutting in bottom-hole massif of a rear vertical slot and a slot that is upper along the boundary with the roof, which are longitudinal throughout the face length, lowering of the massif onto the conveyor, splitting of a mineral into slabs, output of the mineral from the face in slabs, their lowing into trolleys and locomotive haulage to a bulk material crushing chamber. In the massif settled down on the conveyor there cutout are inclined transverse slots splitting the massif into inclined layers that are then transferred to horizontal position for splitting of the mineral into slabs. Cutout of vertical transverse slots is performed using a motor-driven multi-jib machine.

EFFECT: high efficiency of a mining face, maximum extraction of mineral deposits from the formation being developed, extraction of methane from the produced mineral, safety of second working as per gas factor and sanitary-hygienic conditions of underground production as to dust.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining industry and may be used in development of thick edge ore bodies with unstable and precious ores, for instance, kimberlite pipes, by the underground method. The method includes formation of man-made massif with tunnelling and filling of stopes at the cut and undercut layer, descending extraction of reserves under the man-made massif and filling of the mined space. Under the man-made massif they form a transition layer-sublevel by alternate tunnelling of the stopes of the first phase, with height equal to the height of the layer, and stopes of the second phase, the height of which is equal to the height of the layer-sublevel, at the same time the stopes of the first phase is given the shape of the tilted trapezoid in the vertical cross section, and stopes of the second phase - the irregular hexagon, besides, the width of the upper bases of figures of these stopes and width of stopes of the above (undercut) layer are accepted with equal value. Reserves of the deposit below the transition layer-sublevel are mined by chambers in staggered order with a shift to a sublevel. Chambers in the cross section are given the shape of the hexahedron extended along the vertical line. The upper part of the chambers is formed in the form of a trapezoid with size of half of chamber height, the contours of the upper base of which match the contours of the base of the filled stopes of the first phase in the transition layer - sublevel, and contours of the lateral upper sides - with contours of the lower sides of the filled adjacent stopes of the second phase. The lower part of the chamber with the size of half of its height is given the shape of the tilted trapezoid in the vertical cross section.

EFFECT: invention makes it possible to increase intensity of mining of ore deposits, to increase size of an extraction unit and to reduce costs for filling works.

5 cl, 2 dwg

FIELD: mining.

SUBSTANCE: invention refers to mining, and namely to production of useful minerals by an underground block leaching method. The underground block leaching method of useful minerals involves driving at the block bottom of openings of drain horizon for collection of productive solutions, crushing and shrinkage of ore so that a drain horizon of a safety pillar is left above openings, drilling of upward pumping wells from openings of drain horizon through the safety pillar, supply through them of a leaching solution to shrunken ore, collection of productive solutions in openings of drain horizon. Upward pumping wells from openings of drain horizon through the safety pillar are drilled to lower boundary of shrunken ore, and the leaching solution mixed with air is supplied to shrunken ore via upward pumping wells in a hydrodynamic cavitation mode.

EFFECT: invention allows increasing extraction degree of useful minerals from ores, shortening leaching duration and reducing flow of leaching reagents.

3 cl, 2 dwg

FIELD: mining.

SUBSTANCE: transportation of mineral deposit crushed with a combine is performed by means of a self-propelled wagon to a self-moving snaking conveyer, the loading part of which is located in a chamber, and the unloading part is located above an ore-passing well, via which the mineral deposit is transported and unloaded to the ore-passing well; with that, movement of the conveyor to the next well is performed when transportation length of mineral deposit with the self-propelled wagon in the chamber achieves maximum length determined as per mathematical expression. Limit length of the chamber, at which continuous operation of the combine is provided by means of a hopper-loading elevator, the self-propelled wagon and the self-moving snaking conveyor, is calculated as per the mathematical expression.

EFFECT: improving working capacity of a combine complex.

2 cl, 4 dwg

FIELD: mining industry.

SUBSTANCE: method includes use of screw-drilling machine for driving of several first ventilation shafts in ore body and driving several second shafts, while second and each second shaft crosses, at least, one matching first shaft, forming first support walls, supporting ceiling. First supporting ceilings consist of ore body zones between neighboring second shafts, each first support wall has portion of at least one first shaft, passing horizontally through it. Horizontal channels are formed, each of which is placed transversely to matching second shaft between appropriate portions of first shaft, formed in adjacent support walls, for forming of group of continuous ventilation shafts. Second shafts are filled for forming second supporting walls, supporting well ceiling, and first supporting walls are extracted. First ventilation shafts can be made parallel to each other. Second shafts may be directed perpendicularly relatively to first ventilation shafts. In ore body air-outlet and air-inlet ventilation mines can be formed, placed at distance from each other along horizontal line, while first or each first ventilation shaft passes through portion of ore body between air-inlet and air-outlet ventilation mines. Driving of second or each second shaft can be performed by cutting machine, or by drilling or explosive mining.

EFFECT: higher efficiency.

7 cl, 11 dwg

Up!