E.n. khrustalev method of determining deformation of material medium under pressure

FIELD: physics.

SUBSTANCE: method includes, at depth h of the medium, performing deformation thereof with pressure p through a hard flat die, determining the modulus of overall and elastic deformation of the medium E0 (kG/cm2), Eel (kG/cm2), measuring the uniform thickness of the medium under the die with a width w (cm) or diameter d (cm), wherein the method includes, at the depth h of the structured medium, determining its internal friction angle and specific cohesion cstr (kG/cm2), calculating the internal friction angle of a medium with a disturbed structure as and specific cohesion thereof determining the value of the actively compressed thickness of the material medium under the die using the relationship - for an elastic structured medium and - for a medium with a disturbed structure, where d (cm) is the diameter of a circular die equivalent to a rectangular die w×l (cm×cm) with a side w<l; the value of elastic deformation of the decompressed medium under die pressure is calculated using the relationship and the value of active collapse of the material medium under excess die pressure p (kG/cm2) in the medium is determined from the relationship

EFFECT: simple method of determining elastic and overall deformation of a compressible material medium.

1 dwg

 



 

Same patents:

FIELD: measurement equipment.

SUBSTANCE: digital multi-component motion sensor comprising a body, a recording unit, a sensitive element with motion sensors, connected into an electric circuit, differing by the fact that the elastic body of the sensor is made in the form of a monoblock from a composite material by winding of a tape of a thermoplastic material with further polymerisation of layers, with placement of deformation strain sensors in its layers, current-conducting elements and contact groups, mounted in layers of the body, the above monoblock of the body has the following structure of the layers differing according to performed functions within the body, counting from outside to inside, a protective layer, which protects elements of the sensor against environmental impact, a layer that levels thickness, comprising holes and grooves for protruding parts of the next layer, an instrumental layer comprising strain sensors, current-conducting elements and contact groups, a support layer that perceives load during writing of a handwritten text, an element of transfer of axial pressure of the writing unit is made in the form of a hollow rod with a writing unit installed in it and connected by the end with the sensitive element, made in the form of an elastic membrane jammed in the in the sensor's body, besides, the element of transfer of the axial movement of the writing unit is made in the form of a ball, contacting with a piezoelement, such as a piezoelement of direct effect of movements, besides, the axis of sensitivity of the piezoelement matches with the longitudinal axis of the sensor.

EFFECT: expansion of functional capabilities of a device due to selective measurement of static or smoothly changing movements along all directions of space with their subsequent digitisation, in particular, development of a small-size device in the form of a pen; rating of the movement of the writing unit during writing of a handwritten text for subsequent statistic treatment; obtaining higher reliability, since in solid multi-layer body the sensors are protected against unfavourable conditions of environment, besides, during manufacturing of the body an excessive quantity of sensors may be installed in its layers, which, whenever necessary, may be readjusted.

2 cl, 6 dwg

FIELD: physics.

SUBSTANCE: apparatus consists of a basic direction selector (BDS), sighting targets (ST), radiator control devices (RCD), a preprocessing unit (PPU) a unit interfacing device (UID) and a processing unit (PU), whose first inputs and outputs are connected to the RCD. The second output is connected to a display, the second, third and fourth inputs are connected to a keyboard, a temperature sensor and a reference temperature sensor mounted on the housing of the BDS, respectively. The fifth input of the PU is connected to a BDS amplifier through series connected PPU and UID, and the third input of the PU is connected through the UID to the second input of the PPU. The BDS includes series-arranged power supply and control unit (PCU), optical image coordinate receiver (OICR), which is in form of a matrix-type photosensitive charge-coupled device, the output of which is connected to an amplifier, a lens, which is optically interfaced through a prism block with sighting targets which are located at the controlled points of the object within the field of vision of the lens in corresponding optical channels formed by said prism block. Each sighting target is placed on the perimeter of the object, wherein the number of sighting targets is not less than the number of points determining the geometric shape of the object, and has a radiator connected to the first output of the corresponding RCD, and an air temperature sensor whose output is connected to the second input of the corresponding RCD. Special cases of the design of the apparatus are characterised by that, each radiator is in form of a semiconductor emitting diode; the processing unit, the keyboard and the display are merged into a unit which is in form of a portable computer; the lens, OICR, PCU and amplifier merged into a unit which is in form of a television camera.

EFFECT: providing the possibility of controlling the deformation profile of an elongated object, maximum angle of torque of the structure, as well as high accuracy of measurements while maintaining high speed of operation of the system.

4 cl, 1 dwg

FIELD: physics.

SUBSTANCE: deformation detecting element with dispersion structures consists of piezoelectric plates on whose surface there is at least one interdigital converter and at least two dispersion reflecting structures, which uses the response lag time of the deformation detecting element as an information signal. The reflecting structures are on two sides of the interdigital transducers. The information signal can also be in form of the wave form or central frequency of a frequency-modulated probing signal, which ensures maximum amplitude response value of the deformation detecting element with dispersion structures.

EFFECT: higher accuracy of measuring deformation owing to use of information on the central frequency of the device.

2 cl, 1 dwg

FIELD: mechanical engineering; repair of vehicles.

SUBSTANCE: vehicle with damage body is lifted to preset height relative to floor, and check points on body are chosen. Part of points are arranged of sound part of body. Additional check point is marked on floor under bottom of body. Said point should be located at a distance from bottom not less than one fourth of maximum distance between chosen check points. Distances between all check points are measured, and basing on obtained data, three coordinates of all chosen check points are calculated by computer with determination of distribution of said check points in space. Then, by turning, check points of damage body are registered with similar check points in computer data base belonging to body of standard vehicle. Distribution of check points received in measurement is compared with distribution of check points in standard vehicle and, basing on results of measurement, value and direction of deformations of damaged body are determined.

EFFECT: simplified method at preservation of high accuracy of determination of deformations.

1 ex, 3 tbl, 2 dwg

FIELD: the invention refers to control of the state for example of textile materials at their interaction with working parts of technological equipment.

SUBSTANCE: the essence is in scanning the surface of the moving material with the aid of the sensitive element of a piezo-converter. The average value of the current linear sizes of the structural elements are calculated according to the number of the impulses generated by a piezo-converter and defined by the quantity of the elements of the structure (for example by the number of weave units) on the reference length of the part of the moving object. Periodically the received results are compared with the corresponding starting data of the structure of the rigid part of the material.

EFFECT: increases accuracy of the evaluation of the strain-deformed state of the moving easily deformed materials of a grid-type structure with simultaneous simplification of technical realization.

2 cl, 3 dwg

Optical programer // 2095755
The invention relates to a measuring and control technology

The invention relates to measuring technique and can be used in the measurement of deformations and stresses

Optical programer // 2077701

The invention relates to the control and measurement technology, in particular to a device for non-destructive testing (stress and strain) of structural elements (pumps , vessels and t

FIELD: the invention refers to control of the state for example of textile materials at their interaction with working parts of technological equipment.

SUBSTANCE: the essence is in scanning the surface of the moving material with the aid of the sensitive element of a piezo-converter. The average value of the current linear sizes of the structural elements are calculated according to the number of the impulses generated by a piezo-converter and defined by the quantity of the elements of the structure (for example by the number of weave units) on the reference length of the part of the moving object. Periodically the received results are compared with the corresponding starting data of the structure of the rigid part of the material.

EFFECT: increases accuracy of the evaluation of the strain-deformed state of the moving easily deformed materials of a grid-type structure with simultaneous simplification of technical realization.

2 cl, 3 dwg

FIELD: mechanical engineering; repair of vehicles.

SUBSTANCE: vehicle with damage body is lifted to preset height relative to floor, and check points on body are chosen. Part of points are arranged of sound part of body. Additional check point is marked on floor under bottom of body. Said point should be located at a distance from bottom not less than one fourth of maximum distance between chosen check points. Distances between all check points are measured, and basing on obtained data, three coordinates of all chosen check points are calculated by computer with determination of distribution of said check points in space. Then, by turning, check points of damage body are registered with similar check points in computer data base belonging to body of standard vehicle. Distribution of check points received in measurement is compared with distribution of check points in standard vehicle and, basing on results of measurement, value and direction of deformations of damaged body are determined.

EFFECT: simplified method at preservation of high accuracy of determination of deformations.

1 ex, 3 tbl, 2 dwg

FIELD: physics.

SUBSTANCE: deformation detecting element with dispersion structures consists of piezoelectric plates on whose surface there is at least one interdigital converter and at least two dispersion reflecting structures, which uses the response lag time of the deformation detecting element as an information signal. The reflecting structures are on two sides of the interdigital transducers. The information signal can also be in form of the wave form or central frequency of a frequency-modulated probing signal, which ensures maximum amplitude response value of the deformation detecting element with dispersion structures.

EFFECT: higher accuracy of measuring deformation owing to use of information on the central frequency of the device.

2 cl, 1 dwg

FIELD: physics.

SUBSTANCE: apparatus consists of a basic direction selector (BDS), sighting targets (ST), radiator control devices (RCD), a preprocessing unit (PPU) a unit interfacing device (UID) and a processing unit (PU), whose first inputs and outputs are connected to the RCD. The second output is connected to a display, the second, third and fourth inputs are connected to a keyboard, a temperature sensor and a reference temperature sensor mounted on the housing of the BDS, respectively. The fifth input of the PU is connected to a BDS amplifier through series connected PPU and UID, and the third input of the PU is connected through the UID to the second input of the PPU. The BDS includes series-arranged power supply and control unit (PCU), optical image coordinate receiver (OICR), which is in form of a matrix-type photosensitive charge-coupled device, the output of which is connected to an amplifier, a lens, which is optically interfaced through a prism block with sighting targets which are located at the controlled points of the object within the field of vision of the lens in corresponding optical channels formed by said prism block. Each sighting target is placed on the perimeter of the object, wherein the number of sighting targets is not less than the number of points determining the geometric shape of the object, and has a radiator connected to the first output of the corresponding RCD, and an air temperature sensor whose output is connected to the second input of the corresponding RCD. Special cases of the design of the apparatus are characterised by that, each radiator is in form of a semiconductor emitting diode; the processing unit, the keyboard and the display are merged into a unit which is in form of a portable computer; the lens, OICR, PCU and amplifier merged into a unit which is in form of a television camera.

EFFECT: providing the possibility of controlling the deformation profile of an elongated object, maximum angle of torque of the structure, as well as high accuracy of measurements while maintaining high speed of operation of the system.

4 cl, 1 dwg

FIELD: measurement equipment.

SUBSTANCE: digital multi-component motion sensor comprising a body, a recording unit, a sensitive element with motion sensors, connected into an electric circuit, differing by the fact that the elastic body of the sensor is made in the form of a monoblock from a composite material by winding of a tape of a thermoplastic material with further polymerisation of layers, with placement of deformation strain sensors in its layers, current-conducting elements and contact groups, mounted in layers of the body, the above monoblock of the body has the following structure of the layers differing according to performed functions within the body, counting from outside to inside, a protective layer, which protects elements of the sensor against environmental impact, a layer that levels thickness, comprising holes and grooves for protruding parts of the next layer, an instrumental layer comprising strain sensors, current-conducting elements and contact groups, a support layer that perceives load during writing of a handwritten text, an element of transfer of axial pressure of the writing unit is made in the form of a hollow rod with a writing unit installed in it and connected by the end with the sensitive element, made in the form of an elastic membrane jammed in the in the sensor's body, besides, the element of transfer of the axial movement of the writing unit is made in the form of a ball, contacting with a piezoelement, such as a piezoelement of direct effect of movements, besides, the axis of sensitivity of the piezoelement matches with the longitudinal axis of the sensor.

EFFECT: expansion of functional capabilities of a device due to selective measurement of static or smoothly changing movements along all directions of space with their subsequent digitisation, in particular, development of a small-size device in the form of a pen; rating of the movement of the writing unit during writing of a handwritten text for subsequent statistic treatment; obtaining higher reliability, since in solid multi-layer body the sensors are protected against unfavourable conditions of environment, besides, during manufacturing of the body an excessive quantity of sensors may be installed in its layers, which, whenever necessary, may be readjusted.

2 cl, 6 dwg

FIELD: physics.

SUBSTANCE: method includes, at depth h of the medium, performing deformation thereof with pressure p through a hard flat die, determining the modulus of overall and elastic deformation of the medium E0 (kG/cm2), Eel (kG/cm2), measuring the uniform thickness of the medium under the die with a width w (cm) or diameter d (cm), wherein the method includes, at the depth h of the structured medium, determining its internal friction angle and specific cohesion cstr (kG/cm2), calculating the internal friction angle of a medium with a disturbed structure as and specific cohesion thereof determining the value of the actively compressed thickness of the material medium under the die using the relationship - for an elastic structured medium and - for a medium with a disturbed structure, where d (cm) is the diameter of a circular die equivalent to a rectangular die w×l (cm×cm) with a side w<l; the value of elastic deformation of the decompressed medium under die pressure is calculated using the relationship and the value of active collapse of the material medium under excess die pressure p (kG/cm2) in the medium is determined from the relationship

EFFECT: simple method of determining elastic and overall deformation of a compressible material medium.

1 dwg

FIELD: physics.

SUBSTANCE: method consists in defining module Eo (MPa) of general deformation and modulus of elasticity Eelast (MPa), internal friction angle of structured medium and its specific adhesion Ctcs (MPa), setting value of external pressure p (MPa) on deformable medium at preliminary calculated values of gravity (domestic) pressure at specified depth h of medium mass analysis total deformation compressed by die elastoviscoplastic (ground) material medium is defined by relationship where Stcs (cm) is elastic draught medium , SH (cm) is sludge medium with deformed structure, B (cm) is width of flat die, is diameter of circular die equivalent to rectangular with side B, Fd (cm2) is area of round stamp, νtcs and νH are values of coefficients of relative transverse deformation of deformable medium in structured and disturbed condition, defined by relationship: in a medium as and in walls of vertical mine and under conditions of compressive compression - and and - is strength parameters of medium with deformed structure and deformation of elastic flexible peat medium is determined from relationship where is peat modulus of elasticity (MPa).

EFFECT: disclosed is method for determining deformation of material medium under pressure.

Up!