Device for production of minerals from continental shelf

FIELD: mining.

SUBSTANCE: device comprises a delivery pipe for supply of minerals designed from top to bottom with a bell and a pipeline for coolant supply. The delivery pipe is designed as variable section pipe with formation of alternating cylindrical compartments with inlets and outlets, and the top parts of some compartments are arranged with inclination as cross-lying with reference to other compartments, and the lower parts of compartments are designed conical, interconnected with coolant supply pipelines. Outlets of compartments are located from inlet holes at the distance necessary for passing and maintaining of soil and ice bodies in a suspension provided that: L≥3·dmax, where L - is the distance between inlets and outlets of compartments, dmax - maximum diameter of soil and ice bodies.

EFFECT: improvement of efficiency of production of minerals from continental shelf.

1 dwg

 

The invention relates to mining and is intended for the incoherent production of minerals from the bottom of the continental shelf.

A device for underwater development of disjointed rocks, including a dredger with the discharge conduit, the ends of which are located on the bottom of the pond, and hadagreed for supplying refrigerant in the discharge pipe, is further provided with a storage container, enclosed in a spherical dome and equipped with a heating element according to the width of the container, where the thawing grentleman bodies and land subsidence in the storage container, while filling the lift device for transporting the rope on the surface of a pond. Discharge pipe is located radially around the perimeter of a spherical dome (EN 74663 U1, IPC E21C 50/00 on 06.02.2008, published 10.07.2008).

The disadvantage of this device is the cyclical process of dredging, which leads to decreased performance.

The closest in technical essence and the achieved result is a device for the extraction of minerals from the bottom of the continental shelf, including the transporting pipe for the supply of minerals and pipeline for flow of the refrigerant, while the transporting pipe for the supply of minerals in the lower part is made with rastrojo�, the remainder is placed in a tube and is coaxial with it, the pipe for feeding the refrigerant is made in the form of a tube-auger, with the possibility of extension. The auger may be formed, for example, of a polymer (EN 115410 U1, IPC E21C 50/00, from 07.11.2011, published on: 27.04.2012).

The present invention has a number of drawbacks:

- the air gap between the outer walls and the conveyor pipe leads to corrosion;

- the formation of ice between the pipe-screw and the walls of the conveying duct may lead to stoppage of the mining process;

- limit on the depth of mining of minerals.

The objective of the technical solution is to simplify the soil extraction from the bottom of the continental shelf, the depth of mining of minerals, improvement of productivity and reduction of losses of minerals rise to the surface, minimization of environmental pollution during device operation.

This is achieved in that the device for the extraction of minerals from the bottom of the continental shelf, including the transporting pipe for the supply of minerals, made from top to bottom with the socket, and a pipe for feeding the refrigerant transporting pipe made in the form of variable cross section, with the formation of alternating cylindrical �of Tsekov, having inlet and outlet openings, and the upper part of one of the compartments are tilted as lying crosswise in relation to other compartments, and bottom compartment is made conical, interconnected with the piping for supplying the refrigerant, and the outlet openings of the compartments are arranged from the inlet holes on the distance required to pass and maintain grentleman bodies in suspension, provided:

L≥3·dmax,

where: L - distance between the input and output openings of the compartments

dmax- maximum diameter grentleman bodies.

The implementation of the transporting pipe is in the form of variable cross section, with the formation of alternating cylindrical compartments having inlet and outlet openings, allows you to capture gerontologie body that has lost negative hydraulic coarseness and seeking again sink to the bottom face, thereby preventing the ascent of the newly formed grunwaldova bodies, passing through the pipeline on the surface of the waters.

The location of the upper parts of some compartments tilted as lying crosswise in relation to other compartments will allow you to send them in a subsequent overlying compartments, thus gruntled body, thawed in the process of ascent, does not fall back into the underwater bottom, and deposited in the nearest compartment to pereklad�Oia and the formation of ice on it, enough for further ascent. The bottom of the compartments, is made conical, interconnected with the piping for supplying the refrigerant, and is provided with a cap and spray nozzle, with the help of the incoming refrigerant to re-numerosity ice on gerontologie body, returning negative hydraulic coarseness, gerontologie body will start to float to the surface of the water area in a conveying pipe, or next to the hopper, where they will be numorous ice.

This solution will allow without any expenditure of energy on the rise and losses of minerals to work at great depths, and the pipes for supplying refrigerant to avoid turbidity waters waters not involved in the process of production of minerals during the flow of refrigerant into the underwater bottom.

The figure shows a General view of the device.

A device for the extraction of minerals from the bottom of the continental shelf consists of a conveyor pipe, made in the form of a cylindrical compartments 1, socket 2, the pipe for feeding the refrigerant 3, the upper portions of the compartments 4 arranged tilted as lying crosswise, inlets 5 and outlets 6.

The proposed device operates as follows.

Mining design, reaching the bottom of the socket 2, together with WMO�targeted him in the piping for supplying the refrigerant 3, covers developing a portion of the surface placers. Meanwhile, the pipeline 3 into the underwater bottom serves the refrigerant, which converts small particles of the mineral in gerontologie body with negative specic gravity. Under the action of the refrigerant gerontologie body rise up, through the input 5 and output 6 hole compartment 1 of the transporting pipe to the surface of the waters, gliding along the upper parts of the compartments 4 arranged tilted as lying crosswise. Under the influence of the refrigerant in the compartment 1 gerontologie body acquires a negative hydraulic coarseness and continue ascent to the surface waters, where they are collected for further transport or processing.

The technical result of the proposed utility model is the possibility of a continuous process of dredging, reducing the cost of transportation of minerals from the underwater bottom, the exclusion restrictions on the depth of the notches, cuts losses when lifting mineral, minimization of environmental pollution during the mining work device.

A device for the extraction of minerals from the bottom of the continental shelf, including the transporting pipe for the supply of minerals, made from top to bottom with the socket, and a pipe for feeding refrigerant, ex�featuring the that the shipping tube is made of variable cross section with the formation of alternating cylindrical compartments having inlet and outlet openings, and the upper part of one of the compartments are tilted as nekretninama in relation to other compartments, and bottom compartment is made conical, interconnected with the piping for supplying the refrigerant, and the outlet openings of the compartments are arranged from the inlet holes on the distance required to pass and maintain grentleman bodies in suspension, provided:
L≥3·dmax
where L is the distance between the input and output openings of the compartments
dmax- maximum diameter grentleman tel.



 

Same patents:

FIELD: mining.

SUBSTANCE: device includes a conveying capacity in the form of a grab bucket provided with levers with thrusts and flexible links, a start sensor located in a container and a flexible cavity. The latter is filled with liquid with a capsule located in it and containing reagents. A capsule throw valve is located at the top of the flexible cavity. Radio beacons are fixed inside the container, on its side walls, and coupling rings are located on the outside. Sodium chloride (3%) and sodium hypochloride (0.3%) are used as reagents.

EFFECT: improving efficiency of operations.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: device includes a grab bucket with armoured jaws and flexible links by means of which the bucket is connected to a gas generator and to a flexible cavity start-up sensor, which are located in a container, and a float. The grab bucket is made from elastic material, and a flexible cavity is equipped with a cable located inside the cavity in the centre, the lower end of which is attached to a partition wall additionally installed between a gas generator and the flexible cavity, and the upper end of the cable is attached to the float. As the elastic material of the grab bucket there used is for example thermopolyutherane. The upper edge of the grab bucket is perforated. Armoured jaws of the grab bucket are provided with holes uniformly distributed throughout the surface area. A full air discharge valve is located at the top of the flexible cavity. The float is made in the form of a radio beacon.

EFFECT: improving efficiency of operations.

6 cl, 3 dwg

FIELD: oil and gas industry.

SUBSTANCE: system contains at least one modular shaft with the central unit placed under water and an uprise buried to the ocean bottom and at least one air-lock chamber to transport duty shifts of workers, materials and equipment. Besides the system comprises at least one drilling area with a horizontal tunnel branched from the uprise in the central unit, and an inclined area for delivery of drill pipes and a vertical area in which bottom part there is a wellhead of at least one well. A power cable and control systems as well as pipeline in the protective shell for oil and gas transportation are connected to the modular shaft.

EFFECT: increasing development efficiency of subsea oil and gas deposits.

9 cl, 56 dwg

FIELD: mining.

SUBSTANCE: proposed device comprises mineral feed pipe aligned inside hollow pipe with funnel at its bottom, and coolant feed pipeline. Additionally, this device comprises coolant feed pipelines distributed uniformly over hollow pipe perimeter, in funnel walls and in extra struts of said funnel. Hollow pipe is located at the level of funnel strut. Funnel strut inner walls are perforated. At the level of funnel, hollow pipe has vertical cut-outs furnished with plugs from top and bottom. Funnel strut top parts are also equipped with plugs.

EFFECT: continuous mining, lower power consumption and extraction costs, minimised negative effects on contamination of environments.

2 cl, 2 dwg

FIELD: oil and gas industry.

SUBSTANCE: method for development of methane hydrates is based on their breaking by water jets at a temperature of more than 285K with the rate more than 1 m/s in a pulse mode with a frequency in the range from 1 up to 200 Hz, gasification and lifting from the seabed. A device for development of methane hydrates contains a floating device, handling equipment, a power generating unit, pipelines, a control unit and an underwater methane hydrate development unit in which body there is an installed infrared heater, a water-jet monitor with pressurised water feed equipment and a gas bleeder.

EFFECT: improvement of energy efficiency for underwater development of methane hydrates and their lifting to the floating device.

2 cl, 1 dwg

Soil intake device // 2517288

FIELD: construction.

SUBSTANCE: device comprises an underwater vessel with atmospheric pressure of air, a trolley, a pulp line with a cone-shaped mixer and a jacket, a bracket with a trolley and a jacket, a vertically arranged working organ with a hydraulic motor, its shaft and tillers. On the shaft of the hydraulic motor there is a conical body, tillers are made in the form of cutters and fixed on the conical body. On the side surface of the conical body there are through holes with transverse size of not less than concretion size. The conical body with cutters is installed below the horizontal input section of the mixer. The bracket is connected with the trolley by means of a rotary hydraulic cylinder with the vertical axis of rotation.

EFFECT: increased efficiency of a soil intake device due to achievement of continuity of the process for production of minerals at the specified area of the water reservoir bottom.

2 cl, 3 dwg

FIELD: mining.

SUBSTANCE: method and plant for sapropel production from the bottom of water reservoirs includes its mining with the help of spiral knives on a cone head of auger transport, its lifting to the reducer with two randomly round-directed output shafts, where jackets of two augers are connected with the help of a corrugated reinforced hose, transportation by another auger into floating containers for filling, towing of containers in a bunch by a boat to piers, their lifting along the trestle on a special trolley upwards, and their emptying by tilting onto a vibration sieve for removal of foreign objects (bottles, stones, plants, etc.), collection of sapropel in a hopper - accumulator for transportation to consumers.

EFFECT: higher efficiency of production of organic sapropel and cleaning of water reservoir.

4 cl, 7 dwg

FIELD: mining.

SUBSTANCE: furrows are cut on ice surface adjoining the pit lane that hinders slime processing to feed heat carrier to defrost and to make cutouts in layer body and cavities under ice body bottom surface. Floating hydraulic gun is used to jet lower layers above ice surface edged by cutouts. Then, ice is broken and thawed while exposed underlying soils are jetted by hydraulic gun and sucked by dredger as pulp to using equipment.

EFFECT: higher efficiency, lower costs at low ambient temperatures.

3 dwg

FIELD: machine building.

SUBSTANCE: method involves lifting of elements of underwater mineral deposits consisting of flow of transporting medium, transportation of hydraulic fluid in supply airlift pipeline, supply of compressed air to mixer of lifting pipeline, creation of multicomponent mixture after compressed air is supplied to hydraulic fluid mixture and transportation of multicomponent mixture flow in lifting airlift pipeline. At that, first, phantom cross section is chosen in the flow intended for transportation of elements of underwater mineral deposits, and for chosen phantom cross section there specified is the range of change of pressure value. Flows of water and air-and-water mixture are created in supply and lifting pipelines by supplying compressed air with the compressor to mixer of lifting pipeline Value of actual pressure is monitored in the chosen phantom cross section, as well as actual range of change of the monitored value is determined. Compliance of the certain actual range to the specified one is checked, and elements of underwater mineral deposits are supplied to water flow of supply airlift pipeline in case certain actual range belongs to the specified one.

EFFECT: increasing development efficiency of underwater mineral deposits at big marine depths due to shortening the total start-up time of airlift plant; avoiding the disturbance of transportation of solid material and gumming of pipelines during airlift start-up.

2 cl, 3 dwg

FIELD: mining.

SUBSTANCE: method involves creation of the main and additional water flows, obtaining of hydraulic fluid flow after addition of elements of natural resources of underwater deposits as part of rock mass to the main water flow and transportation of hydraulic fluid flow. Besides, increase in operation efficiency of transportation process of mineral resources of underground deposits is provided from high depths in process chain of development of underwater deposits of mineral resources due to stabilisation of concentration value of solid particles in hydraulic fluid flow that is transported from multi-purpose system for continuous collection of mineral resources of underwater deposits to base floating means located on water reservoir surface, at rational configuration of technical means.

EFFECT: stabilisation of concentration value of solid particles in hydraulic fluid flow.

3 cl, 3 dwg

FIELD: mining industry.

SUBSTANCE: device has bottom power assembly, connected to base watercraft by force pipeline with conical perforated portion, adjacent to bottom power assembly, conical perforated portion of force pipeline is made of sheet of elastic material and provided with rigid branch pipes with flanges on both ends. Flanges of branch pipes are interconnected by round-link chains placed along flanges perimeter, which are connected to flanges of power assembly and force pipeline branch pipe.

EFFECT: simplified construction, lower costs, higher efficiency.

4 cl, 4 dwg

FIELD: mining industry.

SUBSTANCE: mining combine has extraction means, on which a body is mounted, having at least one first liquid outlet, for supplying liquid to material. Pipeline, through which liquid is fed to first liquid outlet, contains means for measuring flow and/or pressure of liquid in pipeline, for determining, in which of to layers outlet is positioned. Combine can have at least one second liquid outlet, placed in such a way, that first liquid outlet is in lower layer, and second liquid outlet is placed in upper layer. First liquid outlet can have one of multiple first liquid outlets spaced from each other, and second liquid outlet - one of multiple spaced from each other second liquid outlets. Efficiency of liquid flow through multiple spaced first outlets can surpass those of multiple spaced from each other second liquid outlets. Placement of second liquid outlet in separate body cover is possible. First and second liquid outlets can be directed downwardly relatively to direction of mining combine displacement. Method for controlling depth of position of mining combine extraction means includes placing two liquid outlets, interacting with material extraction means, in a material, while second liquid outlet is placed above first liquid outlet, liquid is fed to first and second liquid outlets and flow and/or pressure of liquid is measured. Layer, wherein liquid outlet lies, is detected, and first liquid outlet is placed in lower layer and second liquid outlet is placed in upper layer, to determine depth of position of extraction means relatively to two layers.

EFFECT: higher precision.

2 cl, 9 dwg

FIELD: means for organic and chemical fertilizers obtaining, particularly to extract sapropel silt from lake and lagoon bottom and for water ponds cleaning.

SUBSTANCE: device comprises water-craft with executive tool and with extraction tool of suction type, transportation mechanism and optional equipment. Executive tool comprises turbofan, bell-shaped case with serrated lower edge and at least two pipelines mounted in the case and used for feeding compressed air and driving extraction tool. Optional equipment includes hoisting means and seriously connected accumulator vessel, bin, sump, evaporator, disperser, pelletizer, drying chamber, metering device and transportation mechanism.

EFFECT: reduced sapropel mass losses, reduced time of sapropel preparation to use.

13 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: complex has watercraft, extracting machine with take-in device and pulp-pump, supporting pipeline, perforated branch pipe with sizes of apertures less than minimal size of extracted concretions. Perforated branch pipe is positioned at portion of force pipeline adjacent to extracting machine, and is provided with flanges. Apertures of perforated branch pipe are made in form of multi-drive slit channels along whole length of perforated branch pipe, provided with bandages. Slit channels can be made in form of constant width and directed along generatrix lines of perforated branch pipe, and bandages are positioned in direction perpendicular relatively to perorated branch pipe. Slit channels can be made in form of portions serially positioned behind one another and expanding towards movement of hydraulic mixture. Slit channels can be made of spiral shape, an bandages - in form of longitudinal rods.

EFFECT: higher efficiency.

4 cl, 4 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: device has watercraft, extracting device with collecting means and pulp-pump, force pipeline, perforated branch pipe with sizes of opening less than minimal size of extracted concretions. Perforated branch pipe is positioned in portion of force pipeline adjacent to extracting device and is provided with flanges, and diameter of perforated branch pipe decreases away from extracting machine. Extracting machine is provided with additional pump with latch, mounted in parallel with pulp-pump of extracting machine, and between perforated branch pipe and force pipeline check valve is positioned.

EFFECT: higher efficiency.

2 dwg

FIELD: mining industry, particularly for obtaining minerals from underwater.

SUBSTANCE: plant comprises frame carried by catamaran, drum reels secured to frame at different levels and provided with driving means. Arranged in lower frame base is vessel having chute in which auger is installed. The auger is provided with drive. Frame drums are connected to truck through endless chains to which buckets are hinged. Load cavities of the buckets have orifice arranged from end side thereof and adapted to remove water when buckets move over water surface. Lower bases of the buckets are connected with chains through flexible rods and maintain vertical positions of loads arranged on chains when chain inclination varies. Plant also has compressor connected to float chambers of the buckets by flexible armored tube secured to electric winch rope and by spring. Electric winch is linked with microswitches by electric circuit. Microswitches are adapted to automatically bring electric winch into electric circuit during bucket movement. Catamaran is connected to truck platform through ropes of the winch connected to ship and adapted to lower or lift the truck from ocean bottom. Electric drives of the winches are linked with switch buttons of control panel, which provides remote winch control. Installed in catamaran body are devices to separate concretion mass into fraction and to dehydrate thereof. The devices are made as rotary netted drums with different orifice diameters. The drums are coaxial and spaced apart one from another. Each drum is provided with receiving chamber, drive and fraction outlet. Each fraction outlet is connected to centrifugal means having drive. In accordance to the second embodiment plant has case including three or more frames arranged in staggered order in two rows and centrifugal means. The plant is made as trailed unit and may be unitized with ship. The case is provided with floating pontoon supports. Each pontoon support is connected to compressor and has electromagnetic valve so that the support may immerse the case at proper depth in stormy conditions and emerge thereof after storm termination. Two longitudinal vessels provided with chutes are connected to each frame. Installed in chutes are augers with drives. Shafts with drum reels and drives are secured from both vessel sides at different levels thereof. The drums are provided with endless chains to which buckets are hinged. In accordance with the third embodiment the plant comprises case having three or more frames. The frames are arranged in one or two rows and connected one to another. One longitudinal vessel in secured to each frame. The vessel is provided with chute in which auger with drive is installed. The plant also has case installed on truck, which is mounted on ocean bottom. Conveying wedge-like mechanism is fixedly secured in front of conveyers under truck platform. The wedge-like mechanism is movably installed between drum reels to shift concretion layer from two sides towards bunker bucket loading means.

EFFECT: increased capacity, reliability and durability, improved technical means, workmanship and extended technological capabilities.

3 cl, 16 dwg

FIELD: obtaining minerals from underwater, particularly hydro-mechanized devices for concretion production from seabed.

SUBSTANCE: device comprises movable seabed unit with pulp pump and outlet pipe, pressure pipeline with perforated part, basic ship and connection flanges. The perforated part is formed of parallel pipes connected with outlet pipe of the pulp pump and with pressure pipeline by distribution pipes. Number of pipes and pipe diameter are determined from where D1 is diameter of outlet pulp pump pipe, D2 and n - diameter and number of pipes composing perforated part of pressure pipeline.

EFFECT: increased productivity.

5 dwg

FIELD: rock mining, particularly to develop gravel-sand deposits.

SUBSTANCE: rid comprises body made as U-shaped pontoon and having docking mechanism, which provides connection of similar pontoon sections to maintain floatability thereof in the case of suction head weight increasing. The rig also has suction head made as downhole hydraulic mining tool and having ground receiving means and portal crane for ground receiver lifting and lowering arranged in front pontoon part. The ground receiver is lifted and lowered by suction head rotation about axle arranged in central pontoon part. The rig also has sludge line connected to suction head.

EFFECT: possibility of mining work performing at variable development depth.

4 dwg

FIELD: mining, particularly to produce ore and rock materials, for instance building materials.

SUBSTANCE: mining rig comprises pontoon with suction head having sludge receiving means, as well as crane for sludge receiving means lifting and lowering installed in front pontoon part. Sludge receiving means is lifted and lowered by suction head rotation about axle connected to pontoon. Rig comprises sludge line connected to sludge channel of suction head. The pontoon has U-shaped cross-section and is provided with additional crane arranged in rear part thereof. The suction head is made as downhole hydraulic tool having string composed of two parts in length direction. The parts are pivotally connected one to another. The string is arranged on pontoon so that the parts may be lowered in series. The cranes are portal. The axle is located in rear or front pontoon part.

EFFECT: possibility of mining work performing at variable development depth.

2 dwg

FIELD: methods to develop underwater and flooded ferromanganesian concretion and phosphate shelf concretion deposits, as well as similar flooded and marine deposits mainly including horizontal and flat thin seams located on bed surface.

SUBSTANCE: draghead comprises frame body with upper, lower, side and rear walls, suction pipe of suction dredge, blades secured to intermediate bottom, which may rotate in vertical plane. The draghead is also provided with hydraulic abrasing unit having pressure pipe transversal to upper frame body wall. The pressure pipe is provided with hydraulic heads. The draghead comprises ball-and-socket hinge arranged in upper frame body orifice. Upper horizontal edge of rounded side wall is connected to inner surface of upper wall. Side wall flat part height and rounded part height thereof are related as 1:0.5. Ball-and-socket hinge and rounded part of side frame body have curvature radii in plane view equal to active suction dredge suction radius. Intermediate bottom is installed inside rounded side wall of frame body and may rotate with the use of two hydraulic cylinders about horizontal pin secured to rounded part of side frame body wall.

EFFECT: simplified structure and reduced losses in sludge lines.

7 dwg

Up!