Differential diagnostic technique for cardiogenic mypcardial ischemia and ileocecal-cardial inhibitory reflex

FIELD: medicine.

SUBSTANCE: ECG is recorded. That is followed by a needle block of an ileocecal plexus with an anaesthetic solution in an amount of 60.0-80.0 ml; that is followed by recording another ECG after 60-90 min. The record is compared to the pre-block ECG record. If observing a positive dynamics in ECG results, ischemia caused by ileocecal-cardial inhibitory reflex is diagnosed, while no positive dynamics shows cardiogenic myocardial ischemia.

EFFECT: providing the more effective differential diagnostics of cardiogenic myocardial ischemia and ileocecal-cardial inhibitory reflex with underlying ileocecal patency.

1 ex

 

The invention relates to medicine, cardiology, gastroenterology and surgery, directly to the differential diagnosis of cardiogenic myocardial ischemia and ileocecal-cardiac inhibitory reflex in the background of violations of the ileocecal passage.

There is a method of differential diagnosis of cardiogenic myocardial ischemia and abdominal-cardiac reflex, a particular case of which is ileocecal-cardiac brake reflex, namely, that produce electrocardiographic (ECG) study and the ECG changes characteristic of circulatory disorders of the myocardium diagnosed myocardial ischemia (see Bunimovich M. S., Kosatka S. A. About changes in the T wave of the electrocardiogram in acute diseases of abdominal organs // Actual problems of diagnosis, treatment and prevention of internal diseases. - M - MMSI. - 1992. - S. 41-58).

However, on the background of violations of the ileocecal terrain changes on the ECG can be caused not by the pathology of the heart, but the implementation ileocecal-cardiac brake reflex, due to the development of intraluminal hypertension in the ileum, which develops reflex spasm of blood vessels of the myocardium. This can occur when partial ileocecal obstruction after appendectomy, spastic colitis,terminal eleite, metadevice ileum. In this case the error in diagnosis makes it difficult to determine the tactics of conducting the patient that may threaten the life and health of the patient.

The technical objective of the proposed method is to optimize the differential diagnosis of cardiogenic myocardial ischemia due to cardiac pathology, and ileocecal-cardiac brake reflex on the background of violations of the ileocecal passage.

The technical result is achieved in that in the method of differential diagnosis of cardiogenic myocardial ischemia and ileocecal-cardiac brake reflex, which consists in the fact that despite the violation of ileocecal patency produce ECG recording, and then produce puncture blockade ileocecal plexus anesthetic solution in the volume 60,0-80,0 ml, then after 60-90 min re-record the ECG and the obtained record is compared with the ECG recording made prior to the blockade, and with positive dynamics of ECG diagnose ischemia caused ileocecal-cardiac inhibitory reflex, and in the absence of positive dynamics - cardiogenic myocardial ischemia.

The invention consists in that the first record ECG, then functional blockade ileocecal plexus anesthetic solution in the volume 60,0-80,0 ml, then after 60-90 min production is W ill result re-recording ECG, which is compared with the ECG recording made prior to the blockade, and with positive dynamics of pathological changes on the ECG diagnose ischemia caused ileocecal-cardiac inhibitory reflex, and in the absence of positive dynamics - cardiogenic myocardial ischemia.

The method is as follows. When ileocecal terrain, accompanied intraluminal hypertension in the ileum, record ECG, then under the control of ultrasound to produce needle blockade ileocecal plexus anesthetic solution in the volume 60,0-80,0 ml, then after 60-90 min re-record the ECG, which is compared with the ECG recording made before the siege, and in the presence of positive changes on ECG diagnosed with myocardial ischemia due to ileocecal-cardiac inhibitory reflex, and in the absence of positive dynamics of ECG - cardiogenic myocardial ischemia.

In experiment 10 the cadaver we spent determining the amount of anesthetic that provides for adequate blockade zone ileocecal plexus. For this purpose, through blockade of the ileocecal plexus, introduced a colored solution and evaluated the infiltration solution zone ileocecal plexus. It was found that for adequate blockade ileocecal plexus should not be entered m the it is 60.0 ml of anesthetic.

The method of differential diagnosis of cardiogenic myocardial ischemia and ileocecal-cardiac brake reflex was used in 68 patients with chest pain and signs of myocardial ischemia on the ECG when the disorders clinic ileocecal passage. Of these, 53 were found to have myocardial ischemia, caused ileocecal-cardiac inhibitory reflex and 15 - myocardial ischemia due to cardiac pathology. Diagnostic with no errors.

EXAMPLE. Patient M 56 years old was admitted to the emergency procedure emergency room surgery with complaints of pain in the right iliac region, where it was noted local swelling and asymmetry of the abdomen, dry mouth, pain in the chest, palpitations, interruptions in heart work. History 6 years ago was appendectomy about destructive appendicitis, acute local peritonitis. Since when errors in diet, exercise regularly found swelling and asymmetry of the abdomen in the right iliac region. Many times during these episodes with a diagnosis of adhesive disease, partial intestinal obstruction were hospitalized in the surgical Department, where the attack was controlled by conservative measures. For 10 years, is registered cardiologist diagnosed with ischemic heart disease, arterial hyperten who I am. Tongue dry. Visually belly asymmetrical due to swelling in the right iliac region. Palpation of the abdomen is moderately tense and swollen in the right iliac region, signs of peritoneal irritation questionable. Pulse 88 beats per minute, AD - 160/95 mm RT. senior ECG - marked ST segment depression and a weak negative the T wave, single polytope extrasystoles, tachycardia. For the differential diagnosis of cardiogenic cerebral and ileocecal-cardiac reflex was produced puncture blockade ileocecal plexus under ultrasound control. After the siege was noted a decrease in the intensity of pain in the right iliac region, immediately before the control electrocardiographic study noted rumbling in the abdomen, after which the asymmetry of the abdomen and swelling in the right iliac region, testified to the restoration of the passage from the ileum into the large. The control electrocardiogram ECG changes persisted, as well as substernal pain with bouts of a disruption of the heart. The patient was hospitalized in the cardiology Department. In this situation took place cardiogenic ischemia, for which the patient was hospitalized in the cardiology Department.

Additional symptoms consider new and significant, allowing to increase the overall efficiency is ü differential diagnosis of cardiogenic myocardial ischemia and ileocecal-cardiac brake reflex.

The method of differential diagnosis of cardiogenic myocardial ischemia and ileocecal-cardiac brake reflex, which consists in the fact that despite the violation of ileocecal patency produce ECG recording, characterized in that then produce puncture blockade ileocecal plexus anesthetic solution in the volume 60,0-80,0 ml, then after 60-90 min re-record the ECG and the obtained record is compared with the ECG recording made prior to the blockade, and with positive dynamics of ECG diagnose ischemia caused ileocecal-cardiac inhibitory reflex, and in the absence of positive dynamics - cardiogenic myocardial ischemia.



 

Same patents:

FIELD: medicine.

SUBSTANCE: heart rate variability is assessed. The assessment procedure involves 24-hour Holter monitoring on the 21st day from the moment of the ischemic stroke occurred. And if observing brady-arrhythmias presented by degree 2-3 atrio-ventricular block or degree 2-3 sinoatrial block and sinus pauses of more than 2 sec long, a high risk of cardiovascular fatal complications following the ischemic stroke is predicted.

EFFECT: method provides the high informative and flexible prediction of the risk of cardiovascular fatal complications following the ischemic stroke in the patients with cerebrovascular, cardiac, endocrine comorbidities.

3 tbl, 3 ex

FIELD: medicine.

SUBSTANCE: electric cardio signal recorder in free motion activity comprises an amplifier (1), an analogue-to-digital converter with a multiplex switch (2) and series decomposition unit (3), second arithmetical-logical unit (4), an arithmetic unit (5), an increment code analyser (6), a switchover unit (7) and a digital modem (8), as well as a control unit (9), first (12) and second (10) memory units, an increment code counter (11). A second output of the second arithmetical-logical unit (4) is connected to a first input of a decomposition unit (3); an output of the second memory unit (10) is connected to a second output of the second arithmetical-logical unit (4); a second output of the increment code analyser (6) is connected to a first input of the first memory unit (12), while a third output - to a first input of the increment code counter (11), an output of which is connected to a second input of the first memory unit (12) an output of which us connected to an second input of the switchover unit (7); first, second, third, fourth, fifth and sixth outputs of the control unit (9) are connected respectively to a first input of the analogue-to-digital converter with the multiplex switch (2), a second input of the decomposition unit (3), an input of the second memory unit (10), a third input of the second arithmetical-logical unit (4), a second input of the increment code counter (11) and a third input of the switchover unit (7). The device also comprises an electrode break detector (13) and a heart critical state detector (14). The amplifier (1), the electrode break detector (13), the analogue-to-digital converter with the multiplex switch (2), the heart critical state detector (14) and the decomposition unit (3) are series connected. A seventh output of the control unit (9) is connected to a fourth input of the switchover unit (7); a second output (17) of the electrode break detector (13) is connected to a first input of the control unit (9), a second input of which is connected to a second output (24) of the heart critical state detector (14), and a second output of the second memory unit (10) is connected to a second input (22) of the heart critical state detector (14).

EFFECT: using the invention enables enhancement by detecting the electrode break and the heart critical state in free motion activity.

3 cl, 12 dwg

FIELD: medicine.

SUBSTANCE: invention relates to medicine, namely to paediatric cardiology and paediatric infectious diseases, and can be used for evaluation of indications for cardiometabolic therapy in case of infectious affection of myocardium in children. For this purpose quantitative evaluation of clinical, electrocardiographic, biochemical and echocardiographic indices is determined and realised. As clinical indices auscultative symptomatic: sonority of tones, presence of noises, parameters of arterial pressure are evaluated. As biochemical indices evaluated are: activity of cardiospeciphic enzymes: MB-fraction of creatine phosphokinase, α-hydroxybutyrate dehydrogenase, aspartic transaminase, alanine transaminase and cardiospecific troponin I protein. Echocardiographic examination is realised with application of Dopplerography for evaluation of diastolic ventricular function. Each of indices is evaluated by from 1 to 3 points. Points are summed up and obtained result is used to evaluate indications for cardiometabolic therapy. If the total sum is lower than 3 points, cardiometabolic therapy is not indicated. If the total sum is from 3 points to 7 point including, peroral introduction of cardiometabolic preparations is carried out. If the total sum is from 8 points and higher, parenteral introduction of cardiometabolic preparations is realised.

EFFECT: method provides possibility of determining presence of indications to administering cardiometabolic therapy objectively in minimal terms, including situations, when part of results of additional examination is absent because of some reasons, and of evaluating its efficiency in differential way.

1 tbl, 4 ex

FIELD: medicine.

SUBSTANCE: invention refers to medicine, namely to non-invasive techniques for qualitative-quantitative analysis of the cardiovascular functional state. A pulse signal and an electric heart signal are recorded for 2-3 minutes. The slow waves are recovered from two heart signals; slow-wave spectra are detected in two channels. The windowed Fourier transform is used to calculate spectral ratio powers of the slow waves of the heart signal in the second-order slow-term within the range of 0.01 to 0.05 Hz, in the first-order slow-term within the range of 0.05 to 0.15 Hz, in the respiratory component within the range of 0.15 to 0.5 Hz. The derived data are used to form six informative criteria X…X6. As the heart signal recorded in one of the channels, a heart rate is calculated and used as the seventh informative criterion. The generated seven-element vector of the informative criteria is supplied to an input of a trained neuron network, outputs of which correspond to the allocated classes of the cardiovascular diseases.

EFFECT: technique enables early diagnosing aiming at preventing the disease progression, thereby preventing an increase of the primary hypertension incidence by analysing two heart signals.

3 cl, 9 dwg, 2 ex

FIELD: medicine.

SUBSTANCE: recording ECG is followed by a perianal block with an anaesthetic solution in an amount of 10.0-15.0 ml. Then 60-90 min later ECG is recorded once again, and this recording is compared to the pre-block recording. If observing a positive dynamics of the ECG results, ischemia caused by the anorectal cardioinhibitory reflex is diagnosed. No positive dynamics observed enables diagnosing cardiogenic myocardial ischemia.

EFFECT: method makes it possible to perform the more accurate differential diagnosis of the above pathologies by following a specific procedure in case of pain syndrome in the given category of patients.

1 ex

FIELD: medicine.

SUBSTANCE: recording ECG is followed by a bilateral translumbar block with an anaesthetic solution in an amount of 120-140 ml from each side. Then 60-90 min later ECG is recorded once again, and this recording is compared to the pre-block recording. If observing a positive dynamics of the ECG results, ischemia caused by the enteral cardioinhibitory reflex with underlying intraluminal intestinal hypertension is diagnosed. No positive dynamics observed enables diagnosing myocardial ischemia caused by a cardiac pathology.

EFFECT: enabling performing the more accurate differential diagnosis of the above pathologies by following a specific procedure in case of pain syndrome in the given category of patients.

1 ex

FIELD: medicine.

SUBSTANCE: group of inventions relates to medical equipment. In the method realisation ECG graphs and graphs of tracks of coordinates of the heart electric activity source are built in the system of coordinates, connected to electrodes on the patient's body. After that, the time "zone of beginning" of a P/Q impulse is identified. In the "zone of beginning" a time ECG track is approximated and an intersection of an approximated curve with an isoline is found to determine the time moment of the point of P/Q "beginning". The determined time moments of the "beginning" points are transferred onto an initial track of impulses. The origin of the myocardium coordinate system is transferred into the determined point P of the track. Coordinates of the sinus node of the myocardium SU are tied to the track origin for the complex P, and those of the interventricular septum IVS - to the track origin for the impulse Q. The device for the method realisation contains an electrocardiograph, a unit for the identification of the time area of the "beginning" of the impulse P/Q, a unit of fixation of the "beginning" point on the graph of the tracks and a unit of transfer of the primary system of coordinates into the myocardium coordinate system.

EFFECT: group of inventions makes it possible to increase the efficiency of electrocardiographic examination due to an increased accuracy in the measurement of coordinates of the heart electric activity source.

2 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: patient is tested to determine clinical characteristics, each of which is scored to calculate a diagnostic index. The following clinical characteristics are determined: arterial hypertension taking into account its stage and length; diabetes mellitus, its length taking into account the patient's age and complications; ischemic heart disease and its length, cardiac angina, myocardial infarction and its length; the patient's age; compliance; smoking. The absence of any of the above characteristics is scored as 0 points. That is followed by calculating the total score; depending on the derived value, a high, moderate or low probability of the suffered silent stroke is predicted.

EFFECT: method enables establishing the presence of the suffered silent stroke reliably.

3 dwg, 4 tbl, 3 ex

FIELD: medicine.

SUBSTANCE: invention refers to medicine, namely to physiology and dermatovenerology, to diagnostic technique for a risk of developing pitted keratolysis accompanied by stress as an uncurable element of the professional environment for the purpose of the goal-oriented prevention of the above disease in the individuals having hazardous occupations. A heart rate variability is examined twice - before and 15 minutes after a hot test on a plantar surface. If observing no decrease of the LF/HF value as compared to the reference, a risk of developing stress-induced pitted keratolysis is diagnosed.

EFFECT: technique provides more accurate diagnosis of a risk of developing stress-induced pitted keratolysis by examining the heart rate variability and using the hot test.

1 dwg, 2 tbl, 2 ex

FIELD: medicine.

SUBSTANCE: invention refers to medical equipment. A device for suppressing a power-frequency noise effect on an electric cardiosignal comprises a TR-segment time domain selection unit (2), a key element (8), a filter (14), an amplifier (15), a delay unit (16) and a subtract unit (17). An input of the device is connected to the first input of the key element and an input of the delay unit; an output of the device is an output of the subtract unit. The device comprises an electric cardiosignal second derivative forming unit (1), a comparator (3), an RS-trigger (4), an AND circuit (5), a binary counter (6), a decoder (7), second (9), third (10), fourth (11) and fifth (12) key elements and a scaling amplifier (13).

EFFECT: using the invention enables the higher noise resistance of the analysed electric cardiosignal without misrepresenting information components.

8 dwg

FIELD: medicine.

SUBSTANCE: method involves carrying out pulsating Doppler echocardiographic examination. Mean pressure is determined in pulmonary artery. Mean pressure in pulmonary artery being less than 13 mm of mercury column, no cardiac rhythm disorders risk is considered to take place. The value being greater than 13 mm of mercury column, complex cardiac rhythm disorder occurrence risk is considered to be the case.

EFFECT: accelerated noninvasive method.

1 tbl

FIELD: medicine; medical engineering.

SUBSTANCE: method involves selecting reference point in every cardiac cycle on TP-segment. Values of neighboring N=2n+1 reference points also belonging to TP-segment are recorded, n=1,2,…, beginning from the first reference point. Other reference points are set to zero. The central reference point value is left without changes in a group of 2n+1 member. Reference point values of each of n pairs of reference points symmetrically arranged relative to the central reference point are scaled relative to condition Uj=U0Kj, where U0 is the central reference point amplitude, Uj is amplitude of j-th reference point pair, j=1,2,…,n is the number of each reference point pair relative to the central reference point, Kj is the scaling coefficients determined from received signal suppression condition of the first n spectral zones in spectrum. The so formed electrocardiogram signal reference point groups sequence is let pass through lower frequency filter with isoline drift signal being obtained being produced on output. The signal is amplified and subtracted from the initial electrocardiogram signal that is preliminarily delayed for lower frequency filter delay time. Device has the first lower frequency filter, discretization unit and unit for selecting anchor reference points connected in series, as well as subtraction unit, unit for saving N reference points, scaling unit, the second lower frequency filter, amplifier and delay unit. Output of the unit for selecting anchor reference points is connected to the first input of memory unit the second input of which is connected to discretization unit output. Each of N memory unit outputs is connected to one of N inputs of scaling units. Scaling unit output is connected to the second lower frequency filter input which output is connected to amplifier input. Amplifier output is connected to the first input of subtraction unit, the second output of subtraction unit is connected to delay unit output. Its input is connected to output of the first lower frequency filter. Subtraction unit output is the device output.

EFFECT: reliable removal of isoline drift.

2 cl, 8 dwg

FIELD: medicine; cardiology.

SUBSTANCE: device has amplifier, analog-to-digital converter provided with multiplexer, arithmetic unit, memory unit, digital modem, increment code analyzer, increment codes number counter, switching unit and control unit as well as second memory unit, digital filtration unit and decimation unit. Electrocardiogram signal is registered within frequency-time area. Increase in volume of diagnostic data is provided due to time localization of spectral components of electrocardiogram signal.

EFFECT: widened operational capabilities; improved precision of diagnosing; higher efficiency of treatment.

6 dwg

FIELD: medicine; radio electronics.

SUBSTANCE: device for taking cardiogram has set of electrodes, cardiologic unit, analog-to-digital converter, cardio signal preliminary treatment unit, computer, lower frequency filter, differentiator, functional converter and controlled filter. Power function calculation units are not included. Preliminary continuous filtering of cardio signal entering the computer is provided.

EFFECT: simplified design; improved precision of measurement.

1 dwg

FIELD: medical engineering.

SUBSTANCE: device has electrodes, input amplifier, unit for protecting against error influence when applying medical electric instruments, low frequency filter, signal analysis unit, unit for eliminating isoline drift and electric power supply units.

EFFECT: high accuracy in plotting rhythmograms; improved instruments manipulation safety.

1 dwg

FIELD: medicine.

SUBSTANCE: method involves modeling real three-dimensional patient heart image based on electrocardiogram and photoroentgenogram data and determining basic functional values of its myohemodynamics.

EFFECT: high accuracy and reliability of the method.

2 cl, 5 dwg

FIELD: medicine.

SUBSTANCE: method involves recording cardiac biopotentials with vector electrocardiograph, processing and visualizing signal with graphical plane integral cardiac electric vector projections (vector electrocardiograms) being built and analyzed. Shape, QRS-loop value and vector orientation-recording process are determined. Analysis is based on planar vector electrocardiograms in horizontal, frontal and sagittal planes and in spatial 3-D-form. Vector loop direction is studied in X-,Y-,Z-axis projections, values, dynamics and localization are evaluated in resulting integral cardiac electric vector delta-vector space. To do it, QRS-loop is divided into four segments, one of which characterizes excitation in middle part of axial partition surface, the second one is related to excitation in lower ventricular septum one-third with cardiac apex being involved and the third and the fourth one is related to excitation in basal parts of the left and right heart ventricles. Delta-vector existence and its magnitude are determined from changes in loop segment localization when compared to reference values.

EFFECT: improved data quality usable in planning surgical treatment.

4 dwg

FIELD: medical radio electronics.

SUBSTANCE: device can be used for testing cardio-vascular system of patient. Differential vector-cardiograph has high frequency oscillator, common electrode, unit for reading electrocardiogram and radio cardiogram provided with amplification channels and filtration channels, multiplexer, microprocessor unit with common bus, analog-to-digital converter, keyboard, mouse and indication unit. Device provides higher precision of measurements due to usage of electric component heart activity and truth of diagnostics due to ability of representation of results of testing in form of variety of vector-cardiograms in real time-scale.

EFFECT: improved precision.

1 dwg

FIELD: medicine, cardiology, arhythmology, functional diagnostics.

SUBSTANCE: one should register electrocardiogram in esophagus, apply an electrode in a site where the maximum signal amplitude is registered, increase the signal 5-fold, not less to be filtered in the range of 0.5-40 Hz to be registered at the rate of 100 mm/sec, not less. The time for intra-atrial process should be measured from the beginning of ascending part of the first positive wave of pre-P-tooth up to the top of the second adhesion of P-tooth; the time for inter-atrial process should be measured from the site of crossing a descending part of the first positive wave and the onset of obliquely ascending pre-P-interval up to crossing this interval with the point of abrupt increase of the first phase of P-tooth. The innovation provides more means for noninvasive evaluation of intra- and inter-atrial stimulation process.

EFFECT: higher accuracy of evaluation.

3 dwg

FIELD: medicine, cardiology.

SUBSTANCE: one should register a standard electrocardiogram (ECG) and measure the duration of a "P"-wave. Moreover, it is necessary to conduct daily ECG monitoring to calculate single, paired and group atrial extrasystoles. Then one should calculate diagnostic coefficient DC by the following formula: DC=DC1+DC2+DC3+DC4, DC1 =-8.8 at duration of "P"-wave below 106 msec, 9.3 at duration of "P"-wave above 116 msec, -3.5 at duration of "P"-wave ranged 106-116 msec. DC2=-1.9 at the absence of group atrial extrasystoles during a day, 8.3 -at daily quantity of group atrial extrasystoles being above 4, 2.5 - at daily quantity of group atrial extrasystoles ranged 1-4. DC3=-2.9 at daily quantity of paired atrial extrasystoles being below 3, 8.1 - at daily quantity of paired extrasystoles being above 35, -1.4 - at daily quantity of paired atrial extrasystoles ranged 3-35. DC4=-5.1 at daily quantity of single atrial extrasystoles being below 15, 4.3 - at daily quantity of single atrial extrasystoles being above 150, -1.0 - at daily quantity of single atrial extrasystoles ranged 15-150, if DC is above or equal to 13 one should diagnose high risk for the development of paroxysmal atrial fibrillation, in case if DC is below or equal -13 it is possible to diagnose no risk for the development of paroxysmal atrial fibrillation, and if DC is above -13 and below 13 - the diagnosis is not established.

EFFECT: higher sensitivity of diagnostics.

5 ex

Up!