Method for automated complex development of ore and nonmetallic deposits

FIELD: mining.

SUBSTANCE: method involves general-purpose robot-aided mobile complexes for production, extraction, preparation and processing of mineral raw material and concentrates, a unit of automated control of operation of a mining mill, a technical system for advancing, current and prompt reception of mining and geological information. Fully automated reception of mining and geological information is performed based on build-up of a digital model using a software, cyclic-flow destruction of hard rocks and half-rocks by means of a safe shallow blast-hole drill-and-fire system and flow-through soft rocks - by means of a mechanical method, adaptive and deep differentiated separate mechanised extraction and loading of mineral and rock mass of different categories, types and grades, through-type separate ore preparation in all technological operations, selective primary benefication of mineral raw material using an adaptive gravitational technology and a physical and chemical combined technology, separate processing of concentrates at the final stage using metallurgical methods.

EFFECT: improving development efficiency of small ore and non-metallic deposits of gold, lead, stannum and other mineral deposits.

 

The invention relates to the mining industry and can be used for development of ore deposits and deposits of other solid minerals.

Well-known and widely used in the mining industry outdoor, underground and combined ways of development rock and half-rock mineral deposits. Used mining technology only cyclical and cyclical-and-continuous type.

The main weaknesses of the traditional ways of development of deposits of this type include high capital and operating costs, a significant loss of minerals and ore, heavy and dangerous working conditions of the miners, especially in underground mining method [1].

Their function is relatively close to the claimed is downhole method [2].

The main disadvantages of borehole mining method are low quality selectivity of minerals and low weight of their extraction, as well as limited opportunities for its sustainable use in the development of solid mineral deposits, particularly gold.

The technical result of the proposed method are to increase the efficiency of development of small metallic and non-metallic deposits of gold, lead, about the ova and other minerals.

The technical result is achieved in that in the method aided comprehensive exploration of ore and non-ore deposits, including universal mobile robotic systems for manufacturing production, preparation and processing of mineral raw materials and concentrates, block automated control of mining and processing facilities, technical system advanced, current and operational obtaining geological information, carry out the complex fully automated acquisition of geological information based on the creation of a digital model using the software, cyclical-and-continuous destruction of the rock and half-rock rock safe melkozyorova drilling and blasting method and solid earth rocks - mechanically, adaptive and globallivecasino separate mechanized excavation and loading of mineral and rock mass of different categories, types and varieties, through separate todopoderoso at all technological operations, selective primary enrichment of mineral raw materials using adaptive gravitational technology and physico-chemical combined technology, separate processing of concentrates at the final stage using metallurgical what ways.

The possibility of the formation of the desired sequence of executable actions proposed tools can solve the task, determines the novelty, industrial applicability and inventive step of the development.

The way automated comprehensive exploration of ore and non-metallic deposits includes universal mobile robotic systems for manufacturing production, preparation and processing of mineral raw materials and concentrates, block automated control of mining and processing facilities, technical system advanced, current and operational obtaining geological information. The method is fully automated comprehensive exploration of ore and non-ore deposits of rock and half-rock types is performed with the use of appropriate means and methods for the production of works in the following sequence: prepare the site at a safe distance from work areas and build on it click automated control of the whole complex of works connected with the development of the field; produce the opening of the ore Deposit or near surface ore bodies; automated and efficiently receive, process and use geological information at all stages, stages, processes, and about what jeraziah integrated field development, using as an Autonomous, mobile and portable units, and special devices like mice, connecting with devices other functionality, which will be equipped with a universal set. Carry out the complex fully automated acquisition of geological information based on the creation of a digital model using the software, cyclical-and-continuous destruction of the rock and half-rock rock safe melkozyorova drilling and blasting method and solid earth rocks - mechanically. When loosening rocks use universal robotic Assembly for drilling wells or bore-holes of small diameter. Perform adaptive and globallivecasino separate mechanized excavation and loading of mineral and rock mass of different categories, types and varieties, through separate todopoderoso all process operations. Excavation and loading work is carried out in an automated mode as cyclically and continuously (depending on needs) using excavating robot, allowing as productive gross excavation and loading of the rock mass and the effective selective dredging and separate loading rock mass on categories, types and varieties, with private balcony is nnow ore mass unloaded in the receiving device mineralutvikling block mobile universal complex. Carry out primary election enrichment of mineral raw materials using adaptive gravitational technology and physico-chemical combined technology, separate processing of concentrates at the final stage using metallurgical methods. Temporarily substandard mineral mass is placed in speckled, substandard - in a separate section blade and rock mass in Portovik blocks of the dump. Prepared mineral mass is fed to the processing in one in line with the type sections of the processing Assembly multipurpose complex - for example, gravity, flotation, combined enrichment or accelerated leaching (when exposed to the required pressure and temperature). The concentrate is processed in the adjacent sectional metallurgical unit of the mobile complex, for example, gold-bearing concentrate is subjected to automated processing in refineries unit this unit. Sectional steel unit can be mobile or semi-permanent, or fixed, placed at a small distance from universal preparatory processing complex.

The method allows for together highly complex OS is eenie ore and non-ore deposits of varying complexity and variety of material composition, providing full and selective extraction of low-power mineral bodies until thin veinlets, to avoid the loss of conditioned minerals and a significant dilution, deep physical, technological and qualitative differentiation of mineral mass in the process of its production and during its preparation and processing. The method allows to achieve a high level of productivity and relatively low production capital, operating and infrastructure costs, reduce time putting the plant into operation, as well as environmental and social costs of production.

Sources of information

1. Sekisov, Century, Zykov N. In. The development of mineral properties and evaluation methodology. Khabarovsk-Chita 2012.

2. Arena, J. C. Hydrotechnologies methods of mining. M.., 1975.

The way automated comprehensive exploration of ore and non-ore deposits, including universal mobile robotic systems for manufacturing production, preparation and processing of mineral raw materials and concentrates, block automated control of mining and processing facilities, technical system advanced, current and operational obtaining geological information, characterized in that is carried out in the complex t is using automated acquisition of geological information based on the creation of a digital model using the software, cyclical-and-continuous destruction of the rock and half-rock rock safe melkozyorova drilling and blasting method and solid earth rocks - mechanically, adaptive and globallivecasino separate mechanized excavation and loading of mineral and rock mass of different categories, types and varieties, through separate todopoderoso at all technological operations, selective primary enrichment of mineral raw materials using adaptive gravitational technology and physico-chemical combined technology, separate processing of concentrates at the final stage using metallurgical methods.



 

Same patents:

FIELD: mining.

SUBSTANCE: method involves construction of annular transport ramps of opposite direction with single-lane traffic of dump trucks docking in turning platforms, reloading points, construction of open pit sides with triple projections at an inclination angle of 6075, which are separated with safety berms of required width, formation in some part of the open pit field of one of ore bodies of transport ramp (TR) with width providing for two-lane traffic of dump trucks and adjacent to turning platforms, production of ore for both ore bodies by means of a drill-and-fire method so that pillars are left in the open pit sides; delivery of ore to a factory; stripping - to external dumps, construction of underground mine workings and a water drain system; the modification stage involves reconstruction of the eastern side of the open pit (VRT) with partial processing of its pillars and transshipment of dead rocks into an internal dump, change of some part of single-lane transport ramp along the eastern side for a steeply inclined one, transportation of ore from lower horizons of the open pit with articulated dump trucks (ADT) to the transhipment area, transhipment into large dump trucks for delivery to the factory, and creation of a rock cushion at the open pit bottom. Besides, first, from the lower turning platform in the worked-out area of the western side of the open pit (ZRT) there dumped is the main ramp, thus providing transport communication throughout the depth of the open pit; at the open pit side reconstruction stage, a two-lane ramp is in-series formed with projections with a vertical slope and berms of minimum width and rebuilt into a ramp with an increased inclination in opposite direction; a new dump ramp is formed from the turning platform in the south-western part of the open pit; water drainage is relocated to an inter-pipe zone; TR of opposite direction with single-lane traffic along the western side is put out; TR with an increased slope is constructed from the upper turning platform in the north-western part of the open pit; ZRT pillars are mined out; the new dump ramp is enlarged, and loading and transportation of some part of ore is performed from it at mining-out of ZRT pillars by equipment with remote control (RC) to a transhipment point; another part of the ore is transported to VRT bottom, thus creating an ore cushion, and after ZRT pillars are additionally mined out to technologically practical depth, VRT pillars are broken out onto the ore cushion, thus putting out the transport ramp.

EFFECT: improving efficiency and completeness of development of a mineral deposit by an open-pit mining method.

9 cl, 4 dwg

FIELD: mining.

SUBSTANCE: invention refers to the mining industry and may be used during extraction and processing of molybdenum-containing ores. A method for extraction and processing of molybdenum-containing ores involves open-pit field zoning, outlining of solid ore sections different by processing characteristics, selective extraction on the outlined sections with ores allocation to separate the flow from the zones with increased molybdenite oxidation and its direction to luminescent separation. A powellite enriched product of separation after its size degradation is directed to bulk floatation obtaining a rough molybdenic concentrate. Then after molybdenite oxidation in the rough concentrate, powellite is leached in an environment of a molten mixture of chloride and sodium silicate. The tail product of separation after its size degradation is directed to bulk floatation obtaining the molybdenic concentrate.

EFFECT: increasing a level and quality of molybdenum extraction to the end product from balance molybdenum ores with higher degree of molybdenite oxidation.

1 dwg

FIELD: mining.

SUBSTANCE: in order to enlarge the range of simultaneous processing and versions of control of a cutting force in the processing zone, formation of destruction zones is performed considering strength characteristics of rock as to width of the processed surface at variation of functional and technological parameters and their rational combination under conditions of selective development of deposits with complex structures. Strength characteristics of rock are fixed by mine rock strength recording sensors connected through a system block to a control system of operation of hydraulic cylinders, and drum balance is provided by distributed offset of hydraulic cylinders. Pressure of working liquid in piston cavities of the hydraulic cylinders is designed for a force required for rotation of turning levers.

EFFECT: increasing productivity, improving reliability and enlarging technological efficiency of destruction of rocks of different strength and coherence degree by controlling a cutting force in a zone of processing and formation in a surface layer of the processed massif of destruction zones considering strength characteristics of rock at selective development of deposits with complex structures by means of open-pit surface miners.

2 cl, 6 dwg

FIELD: mining.

SUBSTANCE: method describes the selection of sections in the zone of wind currents, drilling of ledges by wells, charging them with explosive charges, blasting and excavation of the blasted mined rock. Meanwhile only upper ledges are drilled without subdrilling to the design outline of the edge profile, and charging and blasting of wells is performed stage by stage by blocks to the profile height. The correlation of the angle of incidence and profile of the open pit edge and the dominating wind speed under the mathematical formula is determined.

EFFECT: improvement of performance of ventilation of open pits and coal strip mines by ensuring of continuous streamlining of edges of open pits and coal strip mines by a natural air flow.

1 tbl, 3 dwg

FIELD: mining.

SUBSTANCE: proposed method comprises removal of covering access rock at blast loosening by charges with air cushion in the charge lower end, mechanical loosening and push loading of rock, its piling and loading by excavator into carriers. Blast holes for access rock are drilled in mineral formation to the depth of air cushion at the charge bottom end. Single blasting is performed in well-by-well manner by the system of nonelectric initiation. Every second or third blast well is drilled in mineral formation of decreased hardness.

EFFECT: higher efficiency of destruction, power saving at mineral loosening.

2 cl, 2 dwg

FIELD: construction.

SUBSTANCE: engineering-geological and hydrogeological survey is carried out to detect available landslide bodies. Then biolocation survey is performed, using the results of which they detect underground watercourses and discover their characteristics for detection of quantity and location of through filters. Afterwards on the surface of a ledge or a slope or a hillside outside the landslide body a header is arranged for collection of surface waters and some shallow watercourses. Afterwards from the foot of the ledge or the slope or the hillside they arrange a drainage mine deep into the ledge or the slope or the hillside outside the landslide body, from the surface of the ledge or the slope or the hillside they drill vertical wells until coupling with the drainage mine for through filers, couplings are arranged with connection chambers, through filters are lowered into vertical wells from the surface, and through filters are made in the form of pipes with perforated sections of holes and filtering elements made at the coupling level with underground watercourses. The header and the drainage mine are arranged with an inclination of i=0.005 towards the drain for self-flow of captured water.

EFFECT: provision of reliable prevention of landslide formation due to complete drainage of surface and underground waters from a landslide body.

2 cl, 3 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining industry and can be used at formation and stabilisation of ore quality at a stage of mining operations. The method involves determination of coordinates of a bucket of a mining unit, content of a useful component in the mined rock in the bucket of the mining unit as a conditional mathematical expectation of content of the useful component at an excavation point, which is determined as per results of preliminary testing of a network of wells in vicinity of the excavation point with determined coordinates, loading of the transport vehicle and its addressing to unloading sites considering content of the useful component in the transported mined rock. Depending on position of the mining unit in relation to location zones of technological sorts of the mined rock in a working face, a possibility is established and a task is created for predominant excavation of a certain technological sort at loading of the transport vehicle, in compliance with which positioning of the bucket of the extraction unit is performed in the working face at excavation; besides, mining-out of the rocks of the working face is started from an outline between technological types of the mined rock, the position of which and location zone of technological types is specified by geophysical methods during excavation as per the analysis data of the mined rock in the bucket of the mining unit.

EFFECT: improving parameters of quality and excavation of technological sorts of ores and mined rock for ore sorting.

1 dwg

FIELD: mining.

SUBSTANCE: method involves performance of hierarchically real structural deep differentiation of a massif, a deposit (or its section), thus, pointing out the following: different-scale and heterogeneous operational sections based on the most characteristic mining-and-geological peculiar features, including peculiar features of components of mine rocks, and within their limits - ore (mining), ore-porous and rock (overburden) horizons, in them - ore bodies or their parts, operating and rock units, in them - real heterogeneous excavation elements divided into thin and extremely thin layers presented with amenable, temporary non-amenable, non-amenable and low-grade diamond-containing ore, or with rocks; automated production of advance, current and operational express information using a complex method representing a combination of forecasting of probabilistic spatial distribution of diamonds in ore units and in their elements and further direct automated identification of availability, position, quality and quantity of diamonds in thin ore layers by means of an X-ray fluorescence method. With that, crystals of diamonds are automatically extracted from thin ore layers by means of annular hole drilling of each of the crystals separately, without any disturbance of their integrity, and separated from mini-massif of each developed thin layer.

EFFECT: improving ecological and energy efficiency of development of diamond-ore deposits.

FIELD: mining.

SUBSTANCE: method comprises an extraction of overburden rocks by longitudinal stripping cuts with placement on their bottom of a free strip, handling of overburdens from working face of the longitudinal stripping cut and their storage in an internal dump. The extraction of overburdens by longitudinal stripping cuts with placement on their bottom of a free strip, handling of overburdens from working face of the longitudinal stripping cut and their storage in an internal dump at the edge of these stripping cuts are performed within the extraction block. Meanwhile along the bottom edge of the internal dump of the extraction block an additional free strip is placed, which is used for storage of overburdens, with forming of internal dump.

EFFECT: improvement of performance of direct mining method at the expense of increase of productivity by minimising of length and time of idle running of the stripping equipment.

11 dwg

FIELD: mining.

SUBSTANCE: in an excavation method of a useful deposit at fan-like advance of scope of mining operations, which involves advancing of a permanent and working trench, installation of transport communications, excavation of a useful deposit and overburden rocks by treatment of wedge-shaped blocks, according to the invention, development of wedge-shaped blocks is performed at two stages as per a shuttle-type scheme without any shifting of transport communications with preliminary formation of an advancing recess at a turning point of transport communications in the direction of the open-pit field boundary on condition of parameters of the advancing recess L, B providing minimum development of a wedge-shaped block by value Bmin.

EFFECT: uninterrupted production of a useful mineral along the whole scope of mining operations.

2 dwg

FIELD: mining art, in particular, open-pit mining of mineral resources by high benches.

SUBSTANCE: large-diameter single holes are replaced by a pair of divergent holes of a smaller diameter, in which one hole is always vertical, and the other one is inclined towards the bench; the single holes of the larger diameter are replaced with a pair of divergent bundles of parallel converged holes, in which one bundle is vertical, and the other is inclined towards the bench; the single holes of the larger diameter are replaced with a pair of divergent holes of a smaller diameter, in which one hole is vertical, and the other is inclined towards the bench and positioned in the vertical plane parallel with the first one and distant from it by 1-2 hole diameters; the single holes of the larger diameter are replaced by a pair of divergent bundles of parallel converging holes, in which one bundle is vertical, and the other is inclined towards the bench and positioned in the vertical plane parallel with the first one and distant from it by 1-2 hole diameters.

EFFECT: enhanced efficiency of blasting of the benches.

7 cl, 6 dwg

FIELD: mining industry.

SUBSTANCE: method includes dividing quarry on rows, of which first one is extracted to planned depth with external dump-forming, and extraction of following rows is performed with use of internal dump-forming, placing dug rocks to extracted space of adjacent row with common displacement of dump front with development of mining operations. Second and following rows of quarry are divided on basis of height on extraction levels, extraction of uppermost level is performed with placement of dug rocks in upper dump level of extracted space of adjacent row, using surface transporting communication lines, and during extraction of second extractive level dumping of dump level of inner dump is primarily performed by forming pioneer dump at longitudinal processed edge of quarry, on upper area of which transporting lines are placed and dumping of dump level is performed from there, with descent of mining operations in working area of extractive level profile of upper dump area is altered to provided necessary cargo communications of working horizons of extractive level to dump level, after extraction of extractive level remaining pioneer dump is dug to upper mark of following extractive level, and extraction of following extractive levels is performed analogically, using reformed upper area of pioneer dump.

EFFECT: higher efficiency.

10 dwg

FIELD: mining industry.

SUBSTANCE: method includes cutting steps with varying angles. Angles of double step slopes, different on basis of quarry depth, are formed with consideration of decrease of irregularity parameters with deposit depth, with natural block level of upper horizons and influence from mass explosions and wind erosion of rocks with gradual increase of their steepness until forming of vertical slopes of double steps during additional operations in quarry, while angles of slopes and edge portions on upper horizons in highly fractured rocks may be 50-55, in rocks of average and non-specific fracture levels - 70-60 and in low-fractured rocks may be 80-85, and edge portions 60-90 m high in deep portion of quarry with vertical double steps and preventive berms 10 m have slant angle 80-85.

EFFECT: higher efficiency.

6 dwg, 1 tbl, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes extraction of quarry to planned depth with use of quarry ore chutes with accumulating bunkers, cutting ore chutes with deepening of mining in quarry, crushing ore blocks and pieces from face from bunker walls by explosives, loading ore to railway vehicles, cutting and shutting upper portion of ore chutes at each level when mining approaches there is performed by division on beds and semi-shelves with charges in wells, providing for crushing of rock to needed dimensions and safety of mine walls, and further decrease of pieces size and increasing efficiency of ore chute operation by excluding ore suspension is achieved by use of crushing assembly in form of bowl with plate at base, working as anvil under layer of rock, from where ore mass is self-propelled to bunker, and from there by feeder is sent to crusher and further through intermediate conveyer to main conveyer.

EFFECT: higher efficiency.

4 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes extracting quarry to planned depth by ore and rocks extraction by displacement of shelves along horizons with transferring to crushing plants, crushing rocks and then delivering them by lifting device to the surface, during extraction of quarry to planned depth at first stage during construction of board at the end of quarry in zone of decrease of power of deposit in stable rocks conveyer rope system is constructed, connected to hoisting machine, to bed with recesses, allowing to raise crushed material to large height at steep angle and with deepening of mining and displacement of crushers to lower horizons conveyer system is extended to provide for optimal transport shoulder for gathering vehicles.

EFFECT: higher efficiency, higher productiveness.

2 cl, 6 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes opening deposit of mineral resource along its length, extraction of opened rocks in shelves, forming on one of the portions of deposit of forward extracted space reaching planned bottom, moving rocks to external dumps and into extracted space, processing and transporting of mineral resource. Deposit extraction is performed in two directions - perpendicularly to length of deposit with deepening and along length to quarry bottom, while volume of extraction of mineral resource along length is increased and volume of extraction of resources perpendicularly to length is proportionally decreased.

EFFECT: higher efficiency.

2 cl, 3 dwg

FIELD: mining industry.

SUBSTANCE: method includes serial extraction of drifts with placement of opened rocks of drifts in extracted space of previous drifts, continuous combined processes of softening, extraction and movement of rock to dump. Drifts are positioned along cut trench, extraction is performed by adjacent horizontal shavings of face area, rock of each drift is moved by throwing directly to extracted space and compacted in range by realization of kinetic energy of rock.

EFFECT: higher efficiency.

2 dwg

FIELD: mining industry, applicable for slanting of high benches at development of magmatic deposits of mineral resources by open pit.

SUBSTANCE: the method includes drilling of contour holes for formation of a screening peephole, buffer and breaking holes to a depth corresponding to the height of one working subbench with a redrill, the middle row of breaking holes is made with an incomplete drill, charging of the openings and their blasting, dispatch of the rock, after blasting first of outline openings, for formation of the screening peephole, and then of breaking holes and mucking of the rock, similar operations are performed on the underlying subbench of the lower high bench, at the development of the lower high bench, the development of the upper and lower benches is conducted by doubling of the working subbenches, at the development of the lower subbench of the upper high bench the outline openings are drilled to the whole height of the doubled bench, the buffer openings are drilled at a distance of 12 to 13 diameters of the charge from the outline openings and to a depth at least corresponding to the height of one working subbench with a redrill equal to 6-8 diameters of the charge, the first and last rows of the breaking holes are drilled with a redrill, equal to 4-5 diameters of the charge, and the incomplete drill of the middle row of the breaking holes makes up 7-8 diameters of the charge, after blasting of the buffer and breaking opening and mucking of the rock a crest is formed, from whose surface on the side of the slope outline and buffer openings are drilled, the first ones - to the height of doubled subbenches, and the second ones - to the height at least of one lower working subbench, then the breaking openings to the same height as in the above - and underlying subbenches and for production of a natural protective bank on the upper section of the lower high bench in the section of the berm the formed ridge is liquidated by drilling, charging and blasting of the openings of small diameter and depth.

EFFECT: enhanced stability of high benches on the outline of the open pit.

2 cl, 3 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes opening deposit at distance 150 meters from river and forming of natural filtering wall between river and trench, pumping of water from trench into river, extraction of mineral resource, revegetation of dumps, filling of trench with water, accomplishment of formed water body. Mineral resource is extracted from two serially opened trenches - auxiliary, revegetated as water body, and main, positioned at opposite side of river, and soil from opening of which is used for revegetation of auxiliary trench, while in main trench along whole board on the side of river right beyond mining operations inner dump is formed with width not less than 250 meters and with height at same level with earth surface, water from trenches is fed into river, and then into water body through intermediate collectors, while after forming of water body currents of soil waters between trenches and river are made balanced, balance level is estimated on basis of water levels in auxiliary trench and river.

EFFECT: higher efficiency.

1 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method includes extraction of quarry to planned depth in stages with construction f boards with parameters, allowed from stability condition, shutting boards, finishing mineral resource massif. Building and shutting of temporary boards during extraction of steep layers of next level after change of order of extraction of opening and ore zones is started after construction and spacing in center of cut of well-like mine with vertical shelves, with parameters, which are provided for by minimal radiuses of rounded edges enough for movement of rock via spiral chutes to surface to outer dumps, with narrowing space towards bottom at level of opened level of deep portion of deposit with lesser total coefficient of opening of stage and finally board is constructed by steep vertical shelves in deep zone.

EFFECT: higher efficiency.

1 ex, 10 dwg

Up!