Raw mix for manufacturing of heat insulation foam concrete

FIELD: construction.

SUBSTANCE: raw mix for manufacturing of heat insulation foam concrete contains, wt %: portland cement or slag portland cement 24.0-26.0, swollen perlite sand 40.4-44.65, air entering extraction-colophony resin 0.13-0.17, carboxymethylcellulose 0.13-0.17, superplasticiser S-3 1.0-1.2, silica gel 0.05-0.1, water 30.0-32.0.

EFFECT: reduced cement consumption without loss of foam concrete strength.

1 tbl

 

The invention relates to the construction materials industry, in particular the production of cellular concrete.

Famous raw mix for the production of insulating foam that contains, wt%: cement 35,0-39,0; fly ash HPP with a specific surface area 2800-5000 cm2/g 35,0-39,0; resin air entraining extraction-rosin 0,11-0,17; carboxymethylcellulose 0,05-0,07; superplasticizer C-3 0,4-1,4; water - other [1].

The objective of the invention is to reduce the consumption of cement without loss of strength of concrete.

Technical result is achieved by the fact that the raw mix for the production of insulating foam concrete containing Portland cement or slag Portland cement, filler, resin air entraining extraction-rosin, carboxymethylcellulose, superplasticizer C-3, water as a placeholder contains expanded perlite sand and additionally Krempel, in the following ratio, wt.%: Portland cement or slag Portland cement 24,0-26,0; expanded perlite sand 40,4-44,65; resin air entraining extraction-rosin 0,13-0,17; carboxymethylcellulose 0,13-0,17; superplasticizer C-3 1,0-1,2; Krempel 0,05-0,1; water 30,0-32,0.

The composition of the raw mix of the date of manufacture of insulating foam in the table.

The mixture can be used for sovan Portland, the slag Portland cement (500 M), Krempel obtained by any method.

Portland or cheaperthandirt (500 M), Krempel, perlite, carboxymethylcellulose are mixed, water is added, with previously entered into the resin air entraining extraction-rosin and superplasticizer C-3, and prepare the raw mixture. The mixture is filled lubricated with mineral oil metal forms, maintain it in the form before curing. The finished product is extracted from forms and subjected to machining (sawing).

The source of information

1. Patent No. 2237041 RF, SW 38/10, 2003.

Raw mix for the production of thermal insulating foamed concrete containing Portland cement or slag Portland cement, filler, resin air entraining extraction-rosin, carboxymethylcellulose, superplasticizer C-3, water, characterized in that the filler contains expanded perlite sand and additionally Krempel, with the following ratio of components, wt.%:

Portland cement or slag Portland cement24,0-26,0
expanded perlite sand40,4-44,65
smolenslkaya extraction-rosin 0,13-0,17
carboxymethylcellulose0,13-0,17
superplasticizer C-31,0-1,2
Krempelthe 0.05-0.1
water30,0-32,0



 

Same patents:

FIELD: chemistry.

SUBSTANCE: raw material mixture for production of foam concrete includes, wt %: Portland cement 28.0-30.0, liquid potassium and/or sodium glass with density 1300-1500 kg/m3 and silicate modulus 3.2-4.0 0.4-0.6, foaming agent PB-2000 0.4-0.6, glass fibre cut into 2-7 mm long segments 36.0-40.0, water 31.0-33.0.

EFFECT: increased strength of foam concrete, obtained from raw material mixture.

1 tbl

FIELD: construction.

SUBSTANCE: method to manufacture construction products from foam concrete includes preparation of a foam concrete mix from portland cement, fractionated quartz sand, a foaming agent and water in a turbulent mixer, loading of the produced mix into moulds from dielectric material, on the side surfaces of which there are metal electrodes, exposure of the foam concrete mix to the AC electric field of specified frequency and intensity. Processing of the freshly moulded products with electric field is carried out at the field intensity of 1.5-4.5 V/cm for 0.5-5 min. Efficiency of foam concrete mix exposure to the AC electric field depends on grain-size composition of quartz sand and is maximum when sand fractions of 0.16-0.315 mm are used.

EFFECT: improvement of strength characteristics of foam concrete.

3 cl, 6 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to production of structural materials, particularly foam-concrete, and can be used at factories producing foam-concrete articles and structures, when producing commercial-grade foam-concrete and in monolithic construction. The method of designing compositions of foam-concrete mixtures includes determining the volume of components of the foam-concrete mixture - cement, aggregate, water and foam - by calculation and determining consumption of the components per 1 m3 of the foam-concrete mixture taking into account packed density (ρn) of dry starting materials, concentration of the aqueous solution of the foaming agent, volume of foam with optimum concentration of the aqueous solution of the foaming agent, utilisation factor of foam with optimum concentration of the aqueous solution of the foaming agent (or stability factor of foam with optimum concentration of the aqueous solution of the foaming agent in the cement mortar).

EFFECT: use of the disclosed method of designing composition of foam-concrete mixtures simplifies determination of consumption of all components of the foam-concrete mixture.

FIELD: construction.

SUBSTANCE: method for obtaining a heat-insulating material involves mixing of filler and a binding agent with further shaping and hardening. Industrial wood chips 5±2 mm thick are used as filler, and rigid polyurethane foam consisting of polyol and isocyanate is used as the binding agent. First, components of the binding agent are mixed; then, the binding agent is mixed with the filler by layer-by-layer laying of a binding agent layer, a filler layer and a binding agent layer into a mould at the following component ratio, wt %: polyol 24-22, isocyanate 36-33, industrial chips 40-45. After supply of the components is completed, the mould is fixed with latches and exposed during 15-20 minutes.

EFFECT: reduction of density and thermal conductivity of material.

1 tbl, 1 dwg

FIELD: construction.

SUBSTANCE: raw mix for manufacturing of foam concrete includes, wt %: portland cement 27.0-29.0, foaming agent PB-2000 0.4-0.6, fly ash 37.9-38.4, capron finer cut into sections 10-15 mm 0.2-0.5, liquid glass 1.0-2.0, water 30.0-33.0.

EFFECT: increased strength of foam concrete.

1 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to a method of obtaining ampholytic surface-active substances on the basis of a protein-containing raw material and can be used in the process of production of foam-concrete and foam-concrete constructions. In the method of obtaining a foam-generator for the production of foam-concrete and foam-concrete constructions, including the hydrolysis of the protein-containing raw material in the presence of calcium hydroxide, calcium hydroxide is formed, when calcium oxide is introduced in a hydrolysed reaction mixture, the hydrolysis process is carried out in one stage in a reactor-hydrolyser, provided with high-speed stirrer and an external circular loop with a pump for 5-9 hours at a temperature of 110-132°C with the weight ratio of initial ingredients "feather wastes:water:calcium oxide", equal to 100 : (350-400) : (3.5-3.7), with pH of the lime-feather mass at the beginning of hydrolysis varying within the interval of 12.0-12.4, and at the end of hydrolysis in the interval of 7.5-7.7.

EFFECT: obtaining the foam-generator with high foam-generating properties, which are achieved both with the application of moderately mineralised water and alkaline highly hard lime water.

1 ex, 1 tbl

FIELD: chemistry.

SUBSTANCE: fusion mixture for the production of porous filler contains, wt %: montmorillonite clay 94.5-97.5, coal 2.0-4.0, a micro-foaming agent BS and/or a micro-foaming agent OS preliminarily diluted in hot water at a temperature of 85-95°C 0.5-1.5.

EFFECT: improved structure of the porous filler, obtained from the charge.

1 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to the field of building materials, in particular to synthetic hydrocarbon foaming agents, which contain surface-active substances, applied for the production of foam concrete. A foaming agent for the production of foam concrete contains, wt %: sodium salt of alkylsulphates of the primary higher fatty alcohols of the C10 fraction 10.0-25.0, coccoamidopropylhydroxysultone 2.0-4.5, water - the remaining part. The foaming agent for the production of foam concrete contains, wt %: a mixture of sodium salt of alkylsulphates of the primary higher fatty alcohols of the C10 fraction with sodium salt of alkylsulphates of the primary higher fatty alcohols of the C8 fraction, with the content in the mixture of the fraction C10 40-99%, 10.0-25.0, coccoamidopropylhydroxysultone 2.0-4.5, water - the remaining part. The claimed foaming agents additionally contain polymethylpyrrolidone in a quantity of 1.5-5.0 wt %.

EFFECT: improvement of foaming properties of the foaming agent in fresh and sea water with obtaining foam of low and medium multiplicity, simplification of the foaming agent composition.

4 cl, 18 ex, 1 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to field of construction materials, in particular to complex additives, used in production of mortars, in masonry and plaster works. Complex additive to mortars, consisting of lignosulphonate-based plasticiser and air-entraining additive, in accordance with invention, as air-entraining additive, it contains composition of surface-active substances (SAS), which includes low-hydrophilic surface-active substances with value of hydrophilic-lipophilic balance (HLB) 1…3 and highly-hydrophilic surface-active substances with HLB value 30…40 with the following ratio, wt %: lignosulphonates - 80-95; composition of surface-active substances - 5-20. SAS composition includes low-hydrophilic substances with HLB value 1…3 and highly-hydrophilic substances with HLB value 30…40 with the following ratio of components, wt.p.: low-hydrophilic SAS with HLB value 1…3 - 5-20, highly-hydrophilic SAS with HLB value 30…40 - 80-95. Complex additive can additionally include hydrophilic stabiliser from the group of vegetable, artificial or microbiological polysaccharides in amount 1-10% of the total weight of lignosulphonate and composition of surface-active substances.

EFFECT: increased degree of air-entraining, increase of time for which mortar preserves its mobility.

2 cl, 4 ex, 2 tbl

FIELD: chemistry.

SUBSTANCE: in method of obtaining porous heat-insulating material, which includes mixing one of components of expandable polyurethane with filling agent and further introduction into mixture of other component - polyisocyanate, as filling agent used is sawdust with dimensions 4±2 mm, which is preliminarily subjected to vapour processing at temperature, equal 250°C, after processing sawdust is supplied into diffuser of diffusor-confusor device, with supply into zone of transfer of diffuser into confusor of expandable polyurethane component, which includes polyether, based on propylene oxide, oxypropylethylenediamine, dimethylethanolamine, oxyalkylenemethylsiloxane block-copolymer, trichloroethylphosphate; then, obtained mixture is discharged into reactor, where mixture is mixed and vacuumed to residual pressure, equal 15-20 kPa, after which polyisocyanate is introduced into mixture with ratio of all mixture components, wt %: polyether based on propylene oxide 24.54-26.89, oxypropylethylenediamine 8.40-9.20, dimethylethanolamine 0.48-0.55, oxyalkylenemethylsiloxane block-copolymer 0.36-0.40, trichloroethylphosphate 6.80-7.47, polyisocyanate 33.33-35.56, sawdust 20-25, after mixing components, composite mass is supplied into heated to temperature 50-60°C mould and kept for 15-20 min.

EFFECT: obtaining heat-insulating material with lower density and heat-conductivity.

1 dwg, 2 tbl, 12 ex

FIELD: construction.

SUBSTANCE: charge for production of a porous filler contains, wt %: montmorillonite clay ground to powder condition 85.0-90.0, glauconite ground to powder condition 10.0-15.0.

EFFECT: increased strength of a porous filler produced from charge.

1 tbl

Concrete mixture // 2537741

FIELD: chemistry.

SUBSTANCE: concrete mixture contains, wt %: portland cement 24.0-26.0, expanded clay with particle size of 20-40 mm 10.0-15.0, haydite sand 41.4-47.1, superplasticiser S-3 1.0-1.5, sodium ethyl siliconate or sodium methyl siliconate 1.0-1.5, lavsan fibre cut into 10-20 mm pieces 0.1-0.15, water 15.0-17.0.

EFFECT: high strength of articles made from the concrete mixture.

1 tbl

Concrete mixture // 2537733

FIELD: chemistry.

SUBSTANCE: concrete mixture, which includes portland cement, expanded clay, haydite sand, water, further contains asbestos of 6-7 types, which is fluffed up in advance, gypsum binder, sodium methyl siliconate or sodium ethyl siliconate, with the following ratio of components, wt %: portland cement 26.0-30.0; expanded clay with particle size of 20-40 mm 46.0-48.0; haydite sand 5.0-8.5; asbestos of 6-7 types, which is fluffed up in advance, 0.5-1.0; gypsum binder 0.5-1.0; sodium methyl siliconate or sodium ethyl siliconate1.0-1.5; water 15.0-17.0.

EFFECT: high strength.

1 tbl

Concrete mixture // 2536535

FIELD: chemistry.

SUBSTANCE: concrete mixture contains, wt %: portland cement 18.87-21.34, expanded clay 41.13-41.56, superplasticiser LSTM 0.0312, thermal power plant fly ash 13.92-18.87, gas-forming additive PAK-3 0.022-0.025, iron-containing sludge - chemical production waste 0.10-0.50, water - the balance.

EFFECT: obtaining concrete with higher strength and low density.

3 tbl

FIELD: construction.

SUBSTANCE: charge for production of a porous filler comprises, wt %: montmorillonite clay 82.0-86.0, ground schungite sifted via a net with hole size of 2.5 mm 8.0-10.0, ground wollastonite sifted via a net with a hole size of 2.5 mm 6.0-8.0.

EFFECT: increased strength of a porous filler produced from charge.

1 tbl

Ceramic mass // 2531417

FIELD: chemistry.

SUBSTANCE: invention relates to the production of building materials and products, in particular to wall ceramic products, and can be applied in the production of ceramic bricks and stones. A ceramic mass includes easily fusible clay and carbonate-silicon zeolite-containing rock of a mixed mineral composition and flotation wastes of coal washing - coal slurries, and carbonate-silicon zeolite-containing rock is applied with a degree of milling less than 1 mm, with the following component ratio, wt %: easily fusible clay - 60-75; carbonate-silicon zeolite-containing rock - 20-25; flotation wastes of coal washing - 5-15.

EFFECT: reduction of an average density and heat conductivity, increase of the product durability and reduction of expenditures for burning.

1 ex, 4 tbl

FIELD: construction.

SUBSTANCE: method for producing lightweight ceramic heat-insulating building material, comprising mixture of pre-treated silica-containing component and alkaline component, homogenization of raw mixture, drying of the granulated raw mixture, grinding of dried granules and firing in metal moulds. At that, the preliminary treatment of silica-containing component is carried out at stone-separating rolls in order to remove strong impurities and activate the silicon dioxide, in the drying apparatus to achieve the humidity of 19-25% and in grinding device in order to achieve the maximum particle size of 1 mm. Diatomite o tripoli and/or flask, containing the active silicon dioxide is used as silica-containing component, mixture of caustic soda and soda ash in the ratio of 0.5-0.8/1 is used as alkali component. Mixing of silica-containing component and alkaline component is carried out in the mixer of periodic action, providing the content of mass fraction in dry raw mixture of caustic soda of 6-14% and soda ash of 6-15%. Homogenization of raw mixture is carried out by treatment in strew press with filtering grid with size of cells of 8-25 mm, and drying of granular raw material mixture is carried out in dryer drum until the humidity of 5-7% is achieved. Grinding of dried granules is performed until the achievement of maximum particle size of 3 mm, and firing of silicate mixture, obtained as a result of grinding, is carried out in metal moulds in oven by raising the temperature up to 650°C with speed of 100-120°C/hour, and up to maximum of 680-800°C - with speed of 15-25°C/hour with subsequent isothermal exposure at maximum temperature during 1-3 hours, cooling from the maximum temperature up to 600°C is carried out with speed of 30-50°C/hour and from 600 to 50°C - with speed of 50-60°C/hour.

EFFECT: reduction of energy costs and improvement of hygienic and sanitary conditions of production.

4 cl, 5 ex, 3 tbl, 1 dwg

FIELD: process engineering.

SUBSTANCE: invention relates to production of construction materials, particularly, expanded-clay concrete to be used for production of reinforced concrete articles for building blocks. Proposed method comprises activation of 70% of tempering water by quick-action Portland cement and plasticising additive UP-4 in concrete mixer at 15 rpm for 1 min to get homogeneous suspension. Tempering water remainder is mixed with crushed haydite gravel, haydite and quartz sand with pre-activated tempering water for 0.5 minutes. Obtained haydite mix is subjected to two-step heat treatment at 60°C in summer for 5 hours, in winter for 8 hours. Then, it is treated in secondary heat treatment chamber at 40°C for 4 hours.

EFFECT: better placeability, higher strength, accelerated production.

2 tbl

FIELD: construction.

SUBSTANCE: composition of a haydite-concrete mixture includes, wt %: portland cement 18.87-21.34, haydite 41.13-41.56, superplasticiser LSTM 0.0312, fly ash of TPP 13.92-18.87, gasifying additive PAK-3 0.022-0.025, water - balance.

EFFECT: production of haydite concrete with higher strength and reduced density.

3 tbl

FIELD: construction.

SUBSTANCE: swollen perlite is used, which is first saturated with water, water that is not retained by a swollen perlite granule is filtered, the water-saturated perlite is mixed with gypsum, the produced mix is supplied into a die mould for further pressing, and pressed at 10 MPa at least.

EFFECT: increased strength of a finished product with increased time of mortar hardening.

2 cl

FIELD: construction engineering; manufacture of building structures.

SUBSTANCE: proposed method includes preparation of polystyrene concrete mix from binder, foamed polystyrene and water, molding articles from this mixture and heat treatment. Prior to preparation of mixture, foamed polystyrene is subjected to foaming performed at two stages as minimum. At two stages as minimum. At first stage, polystyrene gravel at density of 12-30 kg/cu m is obtained. At subsequent stages its density is brought to 6-11 kg/cu m; polystyrene gravel may be obtained by grinding wastes of articles made from polystyrene to grain composition of fractions to 1-15 mm. Introduced additionally into mixture is air-entrapping additive hardening accelerator and water-reducing additive which are thinned with water. Articles are molded by placing the mixture in metal molds. Mixture is fed to each cell of metal mold by means of hose by forcing it from pneumatic concrete mixer by compressed air. After heat treatment, metal molds containing articles are delivered to demolding station where are subjected to vibration treatment for separation of articles from molds. Then, articles are removed from metal molds. Line proposed for realization of this method includes foaming unit, service bins and proportioners for foamed polystyrene, binder and water, at least one pneumatic concrete mixer for preparation of polystyrene mixture and molding and demolding stations. Proportioners for aqueous solution of hardening accelerator, air-entrapping additive and water-reducing additive, service reservoirs for air-entrapping additive, hardening accelerator and water-reducing additive, screw feeder for delivery of binder to proportioner, vibration table, metal molds with covers, pipe lines with shut-off cocks and swivel chutes, control console and hose. Proportioner is located under service bin forming single reservoir which may be divided by mechanical splitter. Pneumatic concrete mixer is provided with horizontal shaft at volume of 0.6 to 2 cu m. Metal mold is provided with sump having hinged sides, partitions, cargo-gripping mechanism and cover located on sump of cassette. Each cassette is made in form of platform formed by horizontal square sheet and four vertical sheets rigidly secured on horizontal sheet, shifted relative to center axes and interconnected in T-shaped pattern perpendicularly relative to each other forming four cells over perimeter of platform and central cell. Cells over perimeter of platform have three free faces. Cargo-gripping mechanism is located in central cell partitions are mounted between cassettes and are pinched by two vertical sheets. Cover is made in form of metal sheet pressed to upper faces of cells, partitions and sides. According to second version, metal mold has sump and at least one cell heat-insulated articles. Each cell is formed by bottom of sump and two z-shaped profiles clamped together and provided with changeable inserts placed between z-shaped profile. Each z-shaped profile has two side and one central webs. Side surfaces of all webs are perpendicular to plane formed by sump bottom. Changeable inserts are secured on side webs of z-shaped profiles. Each z-shaped profile forms one of subsequent cells by its one cell.

EFFECT: extended technological capabilities; increased productivity; improved quality and enhanced reliability.

11 cl

Up!