Method of fenbendazole encapsulation

FIELD: chemistry.

SUBSTANCE: as medical preparation applied is fenbendazole, as envelope - sodium carboxymethylcellulose, which is precipitated from chloroform solution by addition as non-solvent of methylcarbinol and water at 25°C.

EFFECT: simplification and acceleration of process of obtaining microcapsules, reduction of loss in the process of obtaining microcapsules.

3 ex

 

The invention relates to the field of encapsulation, and in particular, the production of microcapsules of fenbendazol.

Previously known methods for producing microcapsules of drugs. Thus, in U.S. Pat. 2092155, IPC A61K 047/02, A61K 009/16 published 10.10.1997, Russian Federation, proposed a method for microencapsulation of drugs, based on the use of irradiation with ultraviolet rays.

The disadvantages of this method are the duration of the process and the use of ultraviolet radiation, which can influence the formation of microcapsules.

In Pat. 2091071, IPC A61K 35/10, Russian Federation, published 27.09.1997, method for obtaining the drug by dispersion in a ball mill to obtain microcapsules.

The disadvantages of the method are the use of a ball mill and the duration of the process.

In Pat. 2101010, IPC A61K 9/52, A61K 9/50, A61K 9/22, A61K 9/20, A61K 31/19, Russian Federation, published 10.01.1998 proposed chewable form of the drug with taste masking, having the properties of a controlled release drug product that contains microcapsules with a size of 100-800 microns in diameter and consists of pharmaceutical kernel crystalline ibuprofen and polymeric coating comprising a plasticizer, elastic enough to resist chewing. The polymer of the second coating is a copolymer based on methacrylic acid.

The drawbacks of the invention: use of a copolymer based on methacrylic acid, as these polymer coatings can cause cancer; complexity; the duration of the process.

In Pat. 2173140, IPC A61K 009/50, A61K 009/127, Russian Federation, published 10.09.2001, method for obtaining kremnijorganicheskih microcapsules using a rotary cavitation plants with high shear effort and powerful acoustic phenomena of sound and ultrasound range for dispersion.

The disadvantage of this method is the use of special equipment - rotary-cavity setup, which has the ultrasonic action that affects the formation of microcapsules and can cause adverse reactions due to the fact that ultrasound destructive effect on the polymers of protein nature, therefore the proposed method is applicable when working with polymers of synthetic origin.

In Pat. 2359662, IPC A61K 009/56, A61J 003/07, B01J 013/02, A23L 001/00 published 27.06.2009, Russian Federation, proposed a method of producing microcapsules using spray cooling in the spray tower Niro under the following conditions: air temperature at the inlet 10°C, the temperature at the outlet 28°C, the speed of rotation of the spray drum 10000 s is s/min Microcapsules according to the invention have improved stability and provide adjustable and/or prolonged release of the active ingredient.

Disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of conditions (temperature of inlet air 10°C, the temperature at the outlet 28°C, the speed of rotation of the spray drum 10000 rpm).

The closest method is the method proposed in U.S. Pat. 2134967, IPC A01N 53/00, A01N 25/28 published 27.08.1999,, Russian Federation. Water is dispersed solution of a mixture of natural lipids and a PYRETHROID insecticide in the weight ratio of 2-4:1 in an organic solvent, which leads to simplification of the method of microencapsulation.

The disadvantage of this method is the dispersion in the aquatic environment, which makes the proposed method applicable to the production of microcapsules of water-soluble drugs in water-soluble polymers.

The technical objective is the simplification and acceleration of the process of production of microcapsules, the reduction of losses upon receipt of the microcapsules (increase in mass).

The solution of the technical problem is achieved by the method of encapsulation of fenbendazol, characterized in that as the shell of the microcapsules used sodium carboxymethylcellulose when receiving physical-chemical the definition method of deposition nerastvorim using two precipitators - methylcarbazole and chloroform, the retrieval process is carried out without special equipment.

A distinctive feature of the proposed method is the use of sodium carboxymethylcellulose as the shell of the microcapsules, fenbendazol as their cores, and the use of two precipitators - methylcarbazole and chloroform.

The result of the proposed method is to obtain microcapsules of fenbendazol in the sodium carboxymethyl cellulose at 25°C for 20 minutes. The output of the microcapsules is over 90%.

EXAMPLE 1. Obtaining microcapsules of fenbendazol with the dissolution of the drug in dioxane, the ratio of the core/polymer 1:3

100 mg of fenbendazol dissolved in 1 ml of dioxane and the resulting mixture was dispersed in a solution of sodium carboxymethylcellulose in chloroform containing 300 mg of the specified polymer in the presence of 0.01 g of the drug Is under stirring about 1000/sec. Then poured 2 ml methylcarbazole and 1 ml of distilled water. The resulting suspension is filtered and dried at room temperature.

Received 0,396 g white to yellowish powder. The yield was 99%.

EXAMPLE 2. Obtaining microcapsules of fenbendazol with the dissolution of the drug in dimethyl sulfoxide (DMSO), the ratio of the core/polymer 1:3

100 mg of fenbendazol dissolved in 1 ml DMSO and the mixture was dispersed in a solution of NAT is s carboxymethylcellulose in chloroform, containing 300 mg of the specified polymer in the presence of 0.01 g of the drug Is under stirring about 1000/sec. Then poured 2 ml methylcarbazole and 1 ml of distilled water. The resulting suspension is filtered and dried at room temperature.

Received 0,396 g white to yellowish powder. The yield was 99%.

EXAMPLE 3. Obtaining microcapsules of fenbendazol with the dissolution of the drug in dimethylformamide (DMF), the ratio of the core/polymer 1:3

100 mg of fenbendazol dissolved in 1 ml DMF and the resulting mixture was dispersed in a solution of sodium carboxymethylcellulose in chloroform containing 300 mg of the specified polymer in the presence of 0.01 g of the drug Is under stirring about 1000/sec. Then poured 2 ml methylcarbazole and 1 ml of distilled water. The resulting suspension is filtered and dried at room temperature.

Received 0,396 g white to yellowish powder. The yield was 99%.

The obtained microcapsules of fenbendazol physico-chemical method for the deposition nerastvorim using two precipitators - methylcarbazole and chloroform, which increases output and accelerates the process of microencapsulation. The process is simple to perform and lasts for 20 minutes, requires no special equipment.

The proposed method is suitable for the veterinary industry due to the minimum is other, speed, ease of acquisition and allocation of microcapsules.

The method of encapsulation of a medicinal product by precipitation with aristotelem, characterized in that the medicinal product is used fenbendazol, as the shell - sodium carboxymethylcellulose, which is precipitated from a solution in chloroform by adding as herstories methylcarbazole and water at 25°C.



 

Same patents:

FIELD: chemistry.

SUBSTANCE: as medication used is fenbendazole, as envelope used is sodium carboxymethylcellulose, precipitated from solution in diethyl ether by addition as non-solvent butanol and water at 25°C.

EFFECT: simplification and acceleration of process of obtaining microcapsules, reduction of loss in the process of obtaining microcapsules.

3 ex

FIELD: chemistry.

SUBSTANCE: fenbendazole is used as medication, and sodium carboxymethylcellulose, precipitated from solution in heptanes by addition as non-solvent of butanol and water at 25°C, is used as envelope.

EFFECT: simplification and acceleration of process of microcapsule obtaining, reduction of loss in the process of obtaining microcapsules.

3 ex

FIELD: medicine.

SUBSTANCE: cephalosporine preparations are used as therapeutic preparations; a coating is poludan deposited from an aqueous solution by adding butanol and isopropanol as a non-solvent at 25°C.

EFFECT: simplifying and accelerating the process of water-soluble cephalosporin preparation microcapsules, reducing losses of preparing the microcapsules.

3 ex

FIELD: chemistry.

SUBSTANCE: invention provides a method of producing pesticide microcapsules via a nonsolvent deposition method, characterised by that the active substances used are heterocyclic compounds of the triazine series and the envelope is polyvinyl alcohol, which is deposited from an aqueous solution by adding butanol and isopropanol at 25°C as the nonsolvent.

EFFECT: simple process of producing microcapsules of a preparation in water-soluble polymers, high mass output.

3 ex

FIELD: chemistry.

SUBSTANCE: invention provides a method of encapsulating a medicinal preparation via nonsolvent deposition, characterised by that the medicinal preparation used is fenbendazole, the envelope used is sodium carboxymethyl cellulose which is deposited from a solution in dichloromethane by adding, as the nonsolvent, isopropanol and water at 25°C.

EFFECT: simple and faster process of producing microcapsules, reduced losses when producing microcapsules.

3 ex

FIELD: chemistry.

SUBSTANCE: invention provides a method of encapsulating a medicinal preparation via nonsolvent deposition, characterised by that the medicinal preparation used is fenbendazole, the envelope used is sodium carboxymethyl cellulose which is deposited from a solution in tetrachloromethane by adding, as the nonsolvent, isopropanol and water at 25°C.

EFFECT: simple and faster process of producing microcapsules, reduced losses when producing microcapsules, high mass output.

3 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to the chemical-pharmaceutical industry, and represents a method for preparing drug microcapsules by non-solvent addition differing by the fact that the drug preparations are presented by cephalosporin preparations, while a coating is a konjak gum that is precipitated in acetone by addition of non-solvents that are carbinol and water at 25°C.

EFFECT: invention provides simplified and accelerated preparation of the water-soluble drug microcapsules of cephalosporins in the konjac gum, loss reduction in preparing the microcapsules (higher yield-mass).

6 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention relates to the field of pharmaceutics, in particular to microcapsulation of medications of a cephalosporin group, belonging to β-lactam antibiotics, in human serum albumin.

EFFECT: realisation of invention results in simplification and acceleration of the process of obtaining microcapsules of water-soluble medications of the cephalosporin group in human serum albumin, reduction of loss in the process of obtaining microcapsules (increase of the output by weight).

2 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention relates to the field of pharmaceutics, in particular, to obtaining fenbendazole capsules. In realisation of a method simplification and acceleration of the process of obtaining microcapsules, reduction of loss in the process of obtaining microcapsules (increase of the output by weight) are ensured.

EFFECT: claimed method is characterised by application of sodium carboxymethylcellulose as an envelope of microcapsules, fenbendazole as their core, as well as application of two precipitants - butanol and dioxane.

3 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to chemical-pharmaceutical industry, and represents a method for preparing drug microcapsules by non-solvent addition differing by the fact that the drug preparations are presented by the cephalosporin preparations, while a coating is konjak gum that is precipitated in tetrahydrofurane by the addition of non-solvents that are carbinol and water at 25°C.

EFFECT: invention provides simplified and accelerated preparation of the water-soluble drug microcapsules of cephalosporins in konjac gum, loss reduction in preparing the microcapsules (higher yield-mass).

4 ex

FIELD: chemistry.

SUBSTANCE: as medication used is fenbendazole, as envelope used is sodium carboxymethylcellulose, precipitated from solution in diethyl ether by addition as non-solvent butanol and water at 25°C.

EFFECT: simplification and acceleration of process of obtaining microcapsules, reduction of loss in the process of obtaining microcapsules.

3 ex

FIELD: chemistry.

SUBSTANCE: fenbendazole is used as medication, and sodium carboxymethylcellulose, precipitated from solution in heptanes by addition as non-solvent of butanol and water at 25°C, is used as envelope.

EFFECT: simplification and acceleration of process of microcapsule obtaining, reduction of loss in the process of obtaining microcapsules.

3 ex

FIELD: medicine.

SUBSTANCE: cephalosporine preparations are used as therapeutic preparations; a coating is poludan deposited from an aqueous solution by adding butanol and isopropanol as a non-solvent at 25°C.

EFFECT: simplifying and accelerating the process of water-soluble cephalosporin preparation microcapsules, reducing losses of preparing the microcapsules.

3 ex

FIELD: chemistry.

SUBSTANCE: invention provides a method of producing pesticide microcapsules via a nonsolvent deposition method, characterised by that the active substances used are heterocyclic compounds of the triazine series and the envelope is polyvinyl alcohol, which is deposited from an aqueous solution by adding butanol and isopropanol at 25°C as the nonsolvent.

EFFECT: simple process of producing microcapsules of a preparation in water-soluble polymers, high mass output.

3 ex

FIELD: chemistry.

SUBSTANCE: invention provides a method of encapsulating a medicinal preparation via nonsolvent deposition, characterised by that the medicinal preparation used is fenbendazole, the envelope used is sodium carboxymethyl cellulose which is deposited from a solution in dichloromethane by adding, as the nonsolvent, isopropanol and water at 25°C.

EFFECT: simple and faster process of producing microcapsules, reduced losses when producing microcapsules.

3 ex

FIELD: chemistry.

SUBSTANCE: invention provides a method of encapsulating a medicinal preparation via nonsolvent deposition, characterised by that the medicinal preparation used is fenbendazole, the envelope used is sodium carboxymethyl cellulose which is deposited from a solution in tetrachloromethane by adding, as the nonsolvent, isopropanol and water at 25°C.

EFFECT: simple and faster process of producing microcapsules, reduced losses when producing microcapsules, high mass output.

3 ex

FIELD: medicine.

SUBSTANCE: what is described is hydrogel composition containing sodium acrylate, a linking agent, biologically active substances, polyvinyl pyrrolidone, glycerol, propanediol, water, a catalyst agent and a radical polymerisation indicator in the following proportions, wt %: sodium acrylate 2.0-10.0, catalyst agent 0.045-0.48, linking agent 0.195-0.21, radical polymerisation indicator 0.045-0.06, glycerol 4.5-7.5, propanediol 3.0-10.5, biologically active substances 0-1.5, polyvinyl pyrrolidone 0.3-1.5, water - the rest. What is described is a surgical dressing containing a carrier with the hydrogel composition applied thereon.

EFFECT: higher efficacy of the hydrogel composition and surgical dressing thereof, lower labour intensity of the method for preparing the above composition.

10 cl, 1 tbl, 2 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention relates to pharmaceutical industry, in particular to method of obtaining microcapsules of medications of cephalosporin group. Method of obtaining microcapsules of medications of cephalosporin group consists in the following: surface-active substance is added to konjac solution in toluene, after that, powder of preparation of cephalosporin group is dissolved in dimethylformamide and transferred into solution of konjac in toluene, after formation by antibiotic of its own solid phase carbinol and distilled water are added in drops, obtained suspension of microcapsules is filtered, washed with acetone and dried, with process of obtaining microcapsules being carried out under specified conditions.

EFFECT: method ensures simplification and acceleration of the process of obtaining microcapsules of water-soluble medications.

8 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to the chemical-pharmaceutical industry, and represents a method for preparing drug microcapsules by non-solvent addition differing by the fact that the drug preparations are presented by cephalosporin preparations, while a coating is a konjak gum that is precipitated in acetone by addition of non-solvents that are carbinol and water at 25°C.

EFFECT: invention provides simplified and accelerated preparation of the water-soluble drug microcapsules of cephalosporins in the konjac gum, loss reduction in preparing the microcapsules (higher yield-mass).

6 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention relates to the field of pharmaceutics, in particular to microcapsulation of medications of a cephalosporin group, belonging to β-lactam antibiotics, in human serum albumin.

EFFECT: realisation of invention results in simplification and acceleration of the process of obtaining microcapsules of water-soluble medications of the cephalosporin group in human serum albumin, reduction of loss in the process of obtaining microcapsules (increase of the output by weight).

2 ex

FIELD: chemistry.

SUBSTANCE: as medication used is fenbendazole, as envelope used is sodium carboxymethylcellulose, precipitated from solution in diethyl ether by addition as non-solvent butanol and water at 25°C.

EFFECT: simplification and acceleration of process of obtaining microcapsules, reduction of loss in the process of obtaining microcapsules.

3 ex

Up!