Methane hydrate development method and device for its implementation

FIELD: oil and gas industry.

SUBSTANCE: method for development of methane hydrates is based on their breaking by water jets at a temperature of more than 285K with the rate more than 1 m/s in a pulse mode with a frequency in the range from 1 up to 200 Hz, gasification and lifting from the seabed. A device for development of methane hydrates contains a floating device, handling equipment, a power generating unit, pipelines, a control unit and an underwater methane hydrate development unit in which body there is an installed infrared heater, a water-jet monitor with pressurised water feed equipment and a gas bleeder.

EFFECT: improvement of energy efficiency for underwater development of methane hydrates and their lifting to the floating device.

2 cl, 1 dwg

 

The invention relates to means for the development of the resources of the World ocean and can be used for the extraction of natural gas from metamitron.

Maturitate are non-traditional source of hydrocarbons and relict of water. Only in Russia submarine deposits metamitron estimated at 10 trillion m3. The zone of stability of metamitron covers more than 70% of the bottom of the ocean. Attention to the development of deposits of metamitron at the bottom of the oceans caused not so much by their energetic importance as perceived by the need to arrest the environmental hazard potential uncontrolled release into the atmosphere of large quantities of methane, creating a stronger greenhouse effect than carbon dioxide, so-called "hypothesis maturitate guns".

Famous underwater method of placer developments (patent RU №2209976 C2, IPC IS 50/00, 41/30, publ. 10.08.2003), based on the excavation, lifting and transporting gravel deposits.

The disadvantage of this method is its inefficiency in the development of monolithic sediment increased strength.

Known installation for nodule mining (patent RU №2208164 C2, IPC IS 50/00, 2003), containing the craft, means a fence nodules and deliver them to the base ship in the IDA suspended from the endless rope through the sensors, tension gripper grips and control unit with sensors, valves and actuators.

The disadvantage of the invention is its inefficiency in subsea field development at great depths.

The closest known technical solutions proposed method development metamitron and device for its realization is the way of the ascent of minerals from the unit subsea and device for its implementation (patent RU No. 2184852 C2, IPC IS 50/00, publ. 10.07.2002), based on the extraction of minerals, preparing it for transportation and transportation of fluid medium - resistant foam under a pressure of not less than 0.1 MPa higher than the static pressure on the seabed, where the unit underwater development of mineral deposits. Device for lifting mineral includes a floating unit underwater development of minerals, materials handling equipment, power unit, piping and equipment receipt of the transporting agent.

A disadvantage of the known technical solutions are additional costs for the preparation of transporting the fluid - resistant foam and damping rise to the craft and the allocation of wealth.

The objective of the invention is to improve the performance and profitability of development is mangerton.

The technical result of the invention is to improve the efficiency of underwater development metamitron and lifting them to the craft.

The solution of the problem and the technical result is achieved by the fact that in method development metamitron based on their fragmentation, gasification and rise from the seabed, affect them with jets of water at a temperature above C at speeds over 1 m/s in burst mode with a frequency range from 1 Hz to 200 Hz.

The solution of the problem and the technical result is achieved that the device for developing metamitron containing floating unit underwater development of metamitron, handling equipment, power unit, piping and control unit with sensors, valves and actuators, machine frame, underwater development of metamitron made in the form of a cone with kazootoys.com in its top, is connected by a pipeline with the craft, inside mounted infrared heater, and the hinge is placed waterjet monitor with means for supplying water under pressure from a water intake device, placed inside the unit underwater development of metamitron.

The invention consists in the following.

Sediments from metamitron under conically the housing Assembly is subjected to shock of pulsating water jet monitor. Alternating mechanical load of the stream of water with temperature higher than the temperature of the bottom deposits of metamitron leads to crushing, melting and gasification metamitron. While inside the unit underwater development of metamitron form a three-phase slurry of methane, water and solid ice of metamitron. The heated water to monitor served with a craft and its fence are using a tapping device from the space under the body of the unit. The obtained three-phase slurry has a lower density, it is passed through managed gaps gatotoxico on the top of the conical housing of the unit and make a craft to prepare for transportation to the consumer.

1 shows a diagram of the device.

The device comprises a vehicle 1, the underwater unit development metamitron 2, a lifting-transport equipment 3, unit 4, the piping 5 and the control unit 6 with sensors, valves and actuators. The housing 7 unit 2 is made in the form of a cone with kazootoys.com 8 in its top and connected to the pipeline 9 craft 1. Inside the housing 7 has an infrared heater 10, the hinge 11 posted by waterjet monitor 12 with the water supply means 13 under pressure and placed the intake device 14.

Work is t the device is as follows.

Craft 1 set at the anchorage in the area of deposits of metamitron, down the unit underwater development of metamitron 2 and combine it with craft 1 piping 5 and the communication control unit 6. Water at a temperature above C of the cooling systems of the power plant and unit 4 boats 1 on the pressure pipe 5 serves in water monitor 12 and carry out the crushing metamitron, acting on them pulsating stream of water at speeds over 1 m/s and a frequency range from 1 Hz to 200 Hz. Under the action of alternating mechanical and thermal load maturitate crushed, upravlyaut and is gasified. The resulting slurry of methane, water and solid metamitron through kazootoys 8 in pipeline 9 under the action of the Archimedean force and pressure differential lift on the craft 1 and prepared for shipment to consumers.

The introduction of this group of inventions will be involved in the industrial use of large reserves of metamitron as a non-conventional source of energy. On their basis will be developed as a promising fuel for energy and transport. From an environmental point of view, the combustion of metamitron preferable with oil or coal.

1. The way to develop metamitron based on their fragmentation, gasification, polyenes seabed and preparation for transportation to the consumer, characterized in that the crushing deposits metamitron and gasification of conduct when exposed to jets of water at a temperature above C at speeds over 1 m/s in burst mode with a frequency range from 1 Hz to 200 Hz.

2. Device for developing metamitron containing floating unit underwater development of metamitron, handling equipment, power unit, piping and control unit with sensors, valves and actuators, characterized in that the housing of the unit underwater development of metamitron made in the form of a cone with kazootoys.com in its top, is connected by a pipeline with the craft, it has an infrared heater and the hinge is placed waterjet monitor with means for supplying water under pressure from a water intake device, placed inside the unit.



 

Same patents:

Soil intake device // 2517288

FIELD: construction.

SUBSTANCE: device comprises an underwater vessel with atmospheric pressure of air, a trolley, a pulp line with a cone-shaped mixer and a jacket, a bracket with a trolley and a jacket, a vertically arranged working organ with a hydraulic motor, its shaft and tillers. On the shaft of the hydraulic motor there is a conical body, tillers are made in the form of cutters and fixed on the conical body. On the side surface of the conical body there are through holes with transverse size of not less than concretion size. The conical body with cutters is installed below the horizontal input section of the mixer. The bracket is connected with the trolley by means of a rotary hydraulic cylinder with the vertical axis of rotation.

EFFECT: increased efficiency of a soil intake device due to achievement of continuity of the process for production of minerals at the specified area of the water reservoir bottom.

2 cl, 3 dwg

FIELD: mining.

SUBSTANCE: method and plant for sapropel production from the bottom of water reservoirs includes its mining with the help of spiral knives on a cone head of auger transport, its lifting to the reducer with two randomly round-directed output shafts, where jackets of two augers are connected with the help of a corrugated reinforced hose, transportation by another auger into floating containers for filling, towing of containers in a bunch by a boat to piers, their lifting along the trestle on a special trolley upwards, and their emptying by tilting onto a vibration sieve for removal of foreign objects (bottles, stones, plants, etc.), collection of sapropel in a hopper - accumulator for transportation to consumers.

EFFECT: higher efficiency of production of organic sapropel and cleaning of water reservoir.

4 cl, 7 dwg

FIELD: mining.

SUBSTANCE: furrows are cut on ice surface adjoining the pit lane that hinders slime processing to feed heat carrier to defrost and to make cutouts in layer body and cavities under ice body bottom surface. Floating hydraulic gun is used to jet lower layers above ice surface edged by cutouts. Then, ice is broken and thawed while exposed underlying soils are jetted by hydraulic gun and sucked by dredger as pulp to using equipment.

EFFECT: higher efficiency, lower costs at low ambient temperatures.

3 dwg

FIELD: machine building.

SUBSTANCE: method involves lifting of elements of underwater mineral deposits consisting of flow of transporting medium, transportation of hydraulic fluid in supply airlift pipeline, supply of compressed air to mixer of lifting pipeline, creation of multicomponent mixture after compressed air is supplied to hydraulic fluid mixture and transportation of multicomponent mixture flow in lifting airlift pipeline. At that, first, phantom cross section is chosen in the flow intended for transportation of elements of underwater mineral deposits, and for chosen phantom cross section there specified is the range of change of pressure value. Flows of water and air-and-water mixture are created in supply and lifting pipelines by supplying compressed air with the compressor to mixer of lifting pipeline Value of actual pressure is monitored in the chosen phantom cross section, as well as actual range of change of the monitored value is determined. Compliance of the certain actual range to the specified one is checked, and elements of underwater mineral deposits are supplied to water flow of supply airlift pipeline in case certain actual range belongs to the specified one.

EFFECT: increasing development efficiency of underwater mineral deposits at big marine depths due to shortening the total start-up time of airlift plant; avoiding the disturbance of transportation of solid material and gumming of pipelines during airlift start-up.

2 cl, 3 dwg

FIELD: mining.

SUBSTANCE: method involves creation of the main and additional water flows, obtaining of hydraulic fluid flow after addition of elements of natural resources of underwater deposits as part of rock mass to the main water flow and transportation of hydraulic fluid flow. Besides, increase in operation efficiency of transportation process of mineral resources of underground deposits is provided from high depths in process chain of development of underwater deposits of mineral resources due to stabilisation of concentration value of solid particles in hydraulic fluid flow that is transported from multi-purpose system for continuous collection of mineral resources of underwater deposits to base floating means located on water reservoir surface, at rational configuration of technical means.

EFFECT: stabilisation of concentration value of solid particles in hydraulic fluid flow.

3 cl, 3 dwg

Drag head // 2459083

FIELD: mining.

SUBSTANCE: device includes underwater vessel with atmospheric pressure, trolley, pulp line, operating element in composition of a catcher, hydraulic motor with shaft, shroud and ripper. Operating element is connected to the trolley via bracket, and pulp line is hydraulically connected to vessel with atmospheric pressure. The shroud has cylindrical shape and is mounted vertically and rigidly connected to pulp line via upper face end and to catcher via lower face end, the catcher is done in a form of confuser with circular input. Hydraulic motor of bottom-hole type is concentrically built-in the shroud cavity and rigidly connected to it via radial ribs with formation of annular through channel, and ripper is attached to the shaft of this hydraulic motor. The bracket is equipped with two joints and two hydraulic cylinders capable of moving the operating element in vertical and horizontal plains. There is a cab on the trolley that is equipped with oil pump with hydraulic rotary mechanism working on pressure drop, viewport and lamp with isolated power source. Bottom-hole motor of operating element is done with pressure and drainage channels in the housing and swinging spring-loaded dampers.

EFFECT: increase of device productivity and reliability, reduction of risk of water body contamination by ripping products.

2 cl, 4 dwg

FIELD: mining.

SUBSTANCE: complex comprises a basic vessel, which is kinematically connected to a production tool, comprising a rolling capture device installed on skis, a transportation device, which connects a production tool with basic vessel. The rolling capture device of the production set is made in the form of a drum equipped with blades, fixed on a horizontal axis kinematically connected to a drive. Blades are arranged with minimum gaps relative to an inner surface of a cylindrical shape jacket. The upper cylindrical part of the jacket is made with an opening. The axis is installed with the possibility of its rotation in a central part of side walls of the jacket, which in its lower part is equipped with a cut of rectangular form in plan with the possibility of displacement of blades in it and their introduction in thickness of the mineral. Blades are made forked and with flexures. Flexures of blades during their location in the lower part of a jacket are aligned towards the side opposite to direction of production tool displacement. At the same time the distance between forks of the blades is adopted as less than the minimum cross size of produced nodules. The cut in the jacket is made so that its edges are placed above useful thickness of a mineral. The jacket with the help of a receiving tray of narrowing cross section is connected to a suction nozzle of a soil pump. The soil pump is installed on cross beams of skis at the side of the jacket opposite to direction of production set displacement. The injection nozzle of the soil pump is connected to a perforated section of a pipeline fixed on a jacket and arranged above it, with the possibility of connection with a flexible discharge pipeline. The discharge pipeline is aligned in plan coaxially with an injection nozzle of a soil pump along a longitudinal axis of jacket symmetry. The production set is balanced in a transverse direction. Skis are fixed at two sides on side walls of the jacket and are made as V-shaped in cross section. The flexible pipeline is made from a combination of rigid rectilinear pipes and flexible inserts from elastic material with connection of adjacent pipes arranged along the perimetre of each pipe with round-link chains that perceive stretching forces.

EFFECT: increased efficiency of a complex, its simplified design, reduced material intensity, power intensity and cost, increased reliability of complex operation.

3 cl, 5 dwg

FIELD: mining.

SUBSTANCE: method consists in destruction of the bottom layer with sharp edges of buckets fixed on vertical conveyor belt; conveyor moves along the reservoir bottom by means of caterpillar drive relative to which the conveyor belt moves vertically with possibility of penetration into the bottom. At that, gaseous hydrate is lifted to the zone isolated from water with surface of turned-over funnel, where it is heated, and evolved gas subject to additional heating is transported to the surface by means of the hose fixed on the funnel top. Also, device for the method's implementation is proposed.

EFFECT: increase in production of gaseous hydrated hydrocarbons.

2 cl, 1 dwg

FIELD: mining.

SUBSTANCE: device for underwater development of mineral deposits involves transporting reservoir which is hinged to rope by means of rod, gas generator, flexible gas cavity with limit pressure valve, and rope with ballast and float. Transporting reservoir is made in the form of bucket grab with flexible links and connected through gas generator equipped with startup sensor and load-carrying rope to flexible cavity.

EFFECT: excavation of mineral deposits from water area bottom and their lifting to surface irrespective of visibility conditions, with minimum power consumption for loading.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: proposed complex comprises base ship articulated with mining plant that comprises rolling gripping device mounted on skis, and transport device that joints mining plant with base ship. Rolling gripping device is made up of vaned drum running on horizontal axle articulated with the drive. Drum vanes are arranged with minimum clearance with respect to cylindrical casing inner surface. Casing perforated surface holes feature diametre smaller than minimum crosswise size of mined concretion. Forked vanes have deflections. Said casing communicates via intake chute of narrowing cross section with ground pump suction branch pipe. Said pump is arranged in skis crosswise girders on the side of casing, opposite the mining plant travel direction. Ground pump delivery branch pipe communicates with perforated pipeline arranged on the casing and secured thereto, that can be connected with flexible delivery pipeline. Said delivery pipeline is arranged coaxially with ground pump pressure branch pipe and directed along casing lengthwise axis of symmetry.

EFFECT: higher efficiency, simplified design, reduced costs.

3 cl, 5 dwg

Water jet nozzle // 2374448

FIELD: mining.

SUBSTANCE: invention is related to treatment of item surfaces with water jet. Water jet nozzle comprises body with the first nozzle head arranged on its front end, besides axis of outlet hole in the first nozzle head in plane of front end of body has an angle of inclination to axis of body rotation and is displaced relative to axis of rotation, and the second nozzle head, arranged on body side surface, besides axis of outlet hole of the second nozzle head is inclined to axis of body rotation to the side of its front end. Body comprises device for flow interruption, which comprises disk made in the form of sleeve, bottom and side walls of which have slots in the form of sectors and small turbine that represents impeller made of hub and blade crown, for instance with four blades arranged at an angle to nozzle axis. Disk and small turbine are fixed on axis, which it in turn is installed in sliding bearings, one of which is fixed in nozzle body from the side of front end, the other one - in central part of support, having shape of ring with ribs of rigidity, with external radius equal to radius of bore, where it is installed. Support is fixed with threaded ring.

EFFECT: improved efficiency of water jet nozzle due to dynamic action of pulsating water jets at material.

4 dwg

The invention relates to mining and can be used for softening and moisturizing the mountain massif

The invention relates to a device for generating pulses of a jet of liquid

Water jet nozzle // 2374448

FIELD: mining.

SUBSTANCE: invention is related to treatment of item surfaces with water jet. Water jet nozzle comprises body with the first nozzle head arranged on its front end, besides axis of outlet hole in the first nozzle head in plane of front end of body has an angle of inclination to axis of body rotation and is displaced relative to axis of rotation, and the second nozzle head, arranged on body side surface, besides axis of outlet hole of the second nozzle head is inclined to axis of body rotation to the side of its front end. Body comprises device for flow interruption, which comprises disk made in the form of sleeve, bottom and side walls of which have slots in the form of sectors and small turbine that represents impeller made of hub and blade crown, for instance with four blades arranged at an angle to nozzle axis. Disk and small turbine are fixed on axis, which it in turn is installed in sliding bearings, one of which is fixed in nozzle body from the side of front end, the other one - in central part of support, having shape of ring with ribs of rigidity, with external radius equal to radius of bore, where it is installed. Support is fixed with threaded ring.

EFFECT: improved efficiency of water jet nozzle due to dynamic action of pulsating water jets at material.

4 dwg

FIELD: oil and gas industry.

SUBSTANCE: method for development of methane hydrates is based on their breaking by water jets at a temperature of more than 285K with the rate more than 1 m/s in a pulse mode with a frequency in the range from 1 up to 200 Hz, gasification and lifting from the seabed. A device for development of methane hydrates contains a floating device, handling equipment, a power generating unit, pipelines, a control unit and an underwater methane hydrate development unit in which body there is an installed infrared heater, a water-jet monitor with pressurised water feed equipment and a gas bleeder.

EFFECT: improvement of energy efficiency for underwater development of methane hydrates and their lifting to the floating device.

2 cl, 1 dwg

FIELD: mining industry.

SUBSTANCE: device has bottom power assembly, connected to base watercraft by force pipeline with conical perforated portion, adjacent to bottom power assembly, conical perforated portion of force pipeline is made of sheet of elastic material and provided with rigid branch pipes with flanges on both ends. Flanges of branch pipes are interconnected by round-link chains placed along flanges perimeter, which are connected to flanges of power assembly and force pipeline branch pipe.

EFFECT: simplified construction, lower costs, higher efficiency.

4 cl, 4 dwg

FIELD: mining industry.

SUBSTANCE: mining combine has extraction means, on which a body is mounted, having at least one first liquid outlet, for supplying liquid to material. Pipeline, through which liquid is fed to first liquid outlet, contains means for measuring flow and/or pressure of liquid in pipeline, for determining, in which of to layers outlet is positioned. Combine can have at least one second liquid outlet, placed in such a way, that first liquid outlet is in lower layer, and second liquid outlet is placed in upper layer. First liquid outlet can have one of multiple first liquid outlets spaced from each other, and second liquid outlet - one of multiple spaced from each other second liquid outlets. Efficiency of liquid flow through multiple spaced first outlets can surpass those of multiple spaced from each other second liquid outlets. Placement of second liquid outlet in separate body cover is possible. First and second liquid outlets can be directed downwardly relatively to direction of mining combine displacement. Method for controlling depth of position of mining combine extraction means includes placing two liquid outlets, interacting with material extraction means, in a material, while second liquid outlet is placed above first liquid outlet, liquid is fed to first and second liquid outlets and flow and/or pressure of liquid is measured. Layer, wherein liquid outlet lies, is detected, and first liquid outlet is placed in lower layer and second liquid outlet is placed in upper layer, to determine depth of position of extraction means relatively to two layers.

EFFECT: higher precision.

2 cl, 9 dwg

FIELD: means for organic and chemical fertilizers obtaining, particularly to extract sapropel silt from lake and lagoon bottom and for water ponds cleaning.

SUBSTANCE: device comprises water-craft with executive tool and with extraction tool of suction type, transportation mechanism and optional equipment. Executive tool comprises turbofan, bell-shaped case with serrated lower edge and at least two pipelines mounted in the case and used for feeding compressed air and driving extraction tool. Optional equipment includes hoisting means and seriously connected accumulator vessel, bin, sump, evaporator, disperser, pelletizer, drying chamber, metering device and transportation mechanism.

EFFECT: reduced sapropel mass losses, reduced time of sapropel preparation to use.

13 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: complex has watercraft, extracting machine with take-in device and pulp-pump, supporting pipeline, perforated branch pipe with sizes of apertures less than minimal size of extracted concretions. Perforated branch pipe is positioned at portion of force pipeline adjacent to extracting machine, and is provided with flanges. Apertures of perforated branch pipe are made in form of multi-drive slit channels along whole length of perforated branch pipe, provided with bandages. Slit channels can be made in form of constant width and directed along generatrix lines of perforated branch pipe, and bandages are positioned in direction perpendicular relatively to perorated branch pipe. Slit channels can be made in form of portions serially positioned behind one another and expanding towards movement of hydraulic mixture. Slit channels can be made of spiral shape, an bandages - in form of longitudinal rods.

EFFECT: higher efficiency.

4 cl, 4 dwg

FIELD: technologies for extracting concretions from sea bottom.

SUBSTANCE: device has watercraft, extracting device with collecting means and pulp-pump, force pipeline, perforated branch pipe with sizes of opening less than minimal size of extracted concretions. Perforated branch pipe is positioned in portion of force pipeline adjacent to extracting device and is provided with flanges, and diameter of perforated branch pipe decreases away from extracting machine. Extracting machine is provided with additional pump with latch, mounted in parallel with pulp-pump of extracting machine, and between perforated branch pipe and force pipeline check valve is positioned.

EFFECT: higher efficiency.

2 dwg

FIELD: mining industry, particularly for obtaining minerals from underwater.

SUBSTANCE: plant comprises frame carried by catamaran, drum reels secured to frame at different levels and provided with driving means. Arranged in lower frame base is vessel having chute in which auger is installed. The auger is provided with drive. Frame drums are connected to truck through endless chains to which buckets are hinged. Load cavities of the buckets have orifice arranged from end side thereof and adapted to remove water when buckets move over water surface. Lower bases of the buckets are connected with chains through flexible rods and maintain vertical positions of loads arranged on chains when chain inclination varies. Plant also has compressor connected to float chambers of the buckets by flexible armored tube secured to electric winch rope and by spring. Electric winch is linked with microswitches by electric circuit. Microswitches are adapted to automatically bring electric winch into electric circuit during bucket movement. Catamaran is connected to truck platform through ropes of the winch connected to ship and adapted to lower or lift the truck from ocean bottom. Electric drives of the winches are linked with switch buttons of control panel, which provides remote winch control. Installed in catamaran body are devices to separate concretion mass into fraction and to dehydrate thereof. The devices are made as rotary netted drums with different orifice diameters. The drums are coaxial and spaced apart one from another. Each drum is provided with receiving chamber, drive and fraction outlet. Each fraction outlet is connected to centrifugal means having drive. In accordance to the second embodiment plant has case including three or more frames arranged in staggered order in two rows and centrifugal means. The plant is made as trailed unit and may be unitized with ship. The case is provided with floating pontoon supports. Each pontoon support is connected to compressor and has electromagnetic valve so that the support may immerse the case at proper depth in stormy conditions and emerge thereof after storm termination. Two longitudinal vessels provided with chutes are connected to each frame. Installed in chutes are augers with drives. Shafts with drum reels and drives are secured from both vessel sides at different levels thereof. The drums are provided with endless chains to which buckets are hinged. In accordance with the third embodiment the plant comprises case having three or more frames. The frames are arranged in one or two rows and connected one to another. One longitudinal vessel in secured to each frame. The vessel is provided with chute in which auger with drive is installed. The plant also has case installed on truck, which is mounted on ocean bottom. Conveying wedge-like mechanism is fixedly secured in front of conveyers under truck platform. The wedge-like mechanism is movably installed between drum reels to shift concretion layer from two sides towards bunker bucket loading means.

EFFECT: increased capacity, reliability and durability, improved technical means, workmanship and extended technological capabilities.

3 cl, 16 dwg

Up!