Method for fenbendazole encapsulation

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to drug microencapsulation, particularly for preparing fenbendazole microcapsules. The method is characterised by the fact that a microcapsule coating is carboxymethyl cellulose; fenbendazole dissolved in dioxane or dimethyl sulphoxide (DMSO), or dimethyl formamide (DMFM) is dispersed into the solution of sodium carboxymethyl cellulose in dioxane in the presence of the preparation E472c; further, isopropanol and distilled water are added; the prepared microcapsule suspension is filtered and dried; a process of microcapsules is conducted at 25°C for 20 minutes with no special equipment; with nucleus/polymer ratio making 1:3.

EFFECT: invention provides simplifying and accelerating the process of preparing the fenbendazole microcapsules in carboxymethyl cellulose, reducing losses in preparing the microcapsules (higher weight yield).

3 ex

 

The invention relates to the field of encapsulation, and in particular the production of microcapsules of fenbendazol.

Previously known methods for producing microcapsules of drugs. So, in Pat, IPC AC 047/02, AK 009/16 published 10.10.1997, the Russian Federation proposed a method for microencapsulation of drugs, based on the use of irradiation with ultraviolet rays.

The disadvantages of this method are the duration of the process and the use of ultraviolet radiation, which can influence the formation of microcapsules.

In Pat, IPC AC 35/10 Russian Federation, published 27.09.1997, method for obtaining the drug by dispersion in a ball mill to obtain microcapsules.

The disadvantages of the method are the use of a ball mill and the duration of the process.

In Pat, IPC AC 9/52, AK 9/50, AK 9/22, AK 9/20, AK 31/19 Russian Federation, published 10.01.1998 proposed chewable form of the drug with taste masking, having the properties of a controlled release drug product that contains microcapsules with a size of 100 to 800 μm in diameter and consists of pharmaceutical kernel crystalline ibuprofen and polymeric coating comprising a plasticizer, elastic enough to resist chewing. On karnoe coating is a copolymer based on methacrylic acid.

The drawbacks of the invention: use of a copolymer based on methacrylic acid, as these polymer coatings can cause cancer; complexity; the duration of the process.

In Pat, IPC AC 009/50, AK 009/127 Russian Federation, published 10.09.2001, method for obtaining kremnijorganicheskih microcapsules using a rotary cavitation plants with high shear effort and powerful acoustic phenomena of sound and ultrasound range for dispersion.

The disadvantage of this method is the use of special equipment - rotary-quotational installation, which has ultrasonic action that affects the formation of microcapsules and can cause adverse reactions due to the fact that ultrasound destructive effect on the polymers of protein nature, therefore the proposed method is applicable when working with polymers of synthetic origin.

In Pat, IPC AC 009/56, A61J 003/07, IN 1JO 13/02, A23L 001/00 published 27.06.2009 Russian Federation, proposed a method of producing microcapsules using spray cooling in the spray tower Niro under the following conditions: air temperature at the inlet 10°C, the temperature at the outlet 28°C, the speed of rotation of the spray drum 10000 about the Rotov/min Microcapsules according to the invention have improved stability and provide adjustable and/or prolonged release of the active ingredient.

Disadvantages of the proposed method are the duration of the process and the use of special equipment, a set of conditions (temperature of inlet air 10°C, the temperature at the outlet 28°C, the speed of rotation of the spray drum 10000 rpm).

The closest method is the method proposed in Pat, IPC A01N 53/00, A01N 25/28 published 27.08.1999 grossista Federation (1999). Water is dispersed solution of a mixture of natural lipids and a PYRETHROID insecticide in the weight ratio of 2-4:1 in an organic solvent, which leads to simplification of the method of microencapsulation.

The disadvantage of this method is the dispersion in the aquatic environment, which makes the proposed method applicable to the production of microcapsules of water-soluble drugs in water-soluble polymers.

The technical objective is the simplification and acceleration of the process of production of microcapsules, the reduction of losses upon receipt of the microcapsules (increase in mass).

The solution of the technical problem is achieved by the method of encapsulation of fenbendazol, characterized in that as the shell of the microcapsules used sodium carboxymethylcellulose when receiving physical-x the chemical deposition method nerastvorim using two precipitators - isopropanol and dioxane, the retrieval process is carried out without special equipment.

A distinctive feature of the proposed method is the use of sodium carboxymethylcellulose as the shell of the microcapsules, fenbendazol as their cores, and the use of two precipitators - isopropanol and dioxane.

The result of the proposed method is to obtain microcapsules of fenbendazol in the sodium carboxymethyl cellulose at 25°C for 20 minutes. The output of the microcapsules is over 90%.

EXAMPLE 1. Obtaining microcapsules of fenbendazol with the dissolution of the drug in dioxane, the ratio of the core/polymer 1:3

100 mg of fenbendazol dissolved in 1 ml of dioxane and the resulting mixture was dispersed in a solution of sodium carboxymethylcellulose in dioxane containing the specified 300 mg of the polymer in the presence of 0.01 g of the drug Is under stirring 1000 R/C. Then poured 2 ml isopropanol and 1 ml of distilled water. The resulting suspension is filtered and dried at room temperature.

Received 0,396 g white to yellowish powder. The yield was 99%.

EXAMPLE 2. Obtaining microcapsules of fenbendazol with the dissolution of the drug in dimethyl sulfoxide (DMSO), the ratio of the core/polymer 1:3

100 mg of fenbendazol dissolved in 1 ml DMSO and the mixture was dispersed in a solution of the sodium carboxyl is icellulse in dioxane, containing the specified 300 mg of the polymer in the presence of 0.01 g of the drug Is under stirring 1000 R/C. Then poured 2 ml isopropanol and 1 ml of distilled water. The resulting suspension is filtered and dried at room temperature.

Received 0,396 g white to yellowish powder. The yield was 99%.

EXAMPLE 3. Obtaining microcapsules of fenbendazol with the dissolution of the drug in dimethylformamide (DMF), the ratio of the core/polymer 1:3

100 mg of fenbendazol dissolved in 1 ml DMF and the resulting mixture was dispersed in a solution of sodium carboxymethylcellulose in dioxane containing the specified 300 mg of the polymer in the presence of 0.01 g of the drug Is under stirring 1000 R/C. Then poured 2 ml isopropanol and 1 ml of distilled water. The resulting suspension is filtered and dried at room temperature.

Received 0,396 g white to yellowish powder. The yield was 99%.

The obtained microcapsules of fenbendazol physico-chemical method for the deposition nerastvorim using two precipitators - isopropanol and dioxane, which increases output and accelerates the process of microencapsulation. The process is simple to perform and lasts for 20 minutes, requires no special equipment.

The proposed method is suitable for the veterinary industry due to the minimal losses, Bistrot is, ease of acquisition and allocation of microcapsules.

The method of encapsulation of fenbendazol, characterized in that as the shell of the microcapsules used sodium carboxymethylcellulose, with fenbendazol, dissolved in dioxane, or dimethyl sulfoxide (DMSO)or dimethylformamide (DMF), was dispersed in a solution of sodium carboxymethylcellulose in dioxane, in the presence of the drug E472c, then poured isopropanol and distilled water, the resulting suspension of microcapsules are filtered and dried, the process of production of microcapsules is carried out at 25°C for 20 minutes without special equipment, the ratio of the core/polymer is 1:3.



 

Same patents:

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to a method for preparing drug microcapsules of cephalosporins in konjak gum in dioxane. According to the declared method, a konjak gum solution in dioxane is added with a surfactant that is a cephalosporin powder pre-dissolved in ethanol, and with carbinol after cephalosporin forms an independent solid phase. The prepared microcapsule suspension is filtered, washed in acetone and dried in a drying oven.

EFFECT: invention enables simplifying and accelerating the process of water-soluble drug microcapsules of cephalosporins in konjak gum, as well as increasing a mass yield.

4 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to chemical-pharmaceutical industry, and represents a method for preparing drug microcapsules by non-solvent addition differing by the fact that the drug preparations are presented by the cephalosporin preparations, while a coating is konjak gum that is precipitated in tetrahydrofurane by the addition of non-solvents that are carbinol and water at 25°C.

EFFECT: invention provides simplified and accelerated preparation of the water-soluble drug microcapsules of cephalosporins in konjac gum, loss reduction in preparing the microcapsules (higher yield-mass).

4 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to medicine. What is described is an implanted drug delivery device on the basis of polyurethane for the delivery of biologically active compounds at a constant speed for a long period of time, and a method for preparing it. The device is high biocompatible and bioresistant, and applicable as an implant for patients (human and animals) for the delivery of biologically active compounds to tissues and organs.

EFFECT: implanted device provides the delivery at a constant speed for a long period of time.

26 cl, 5 tbl, 14 dwg, 8 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to pharmaceutical industry, particularly to a method for preparing drug microcapsules of cephalosporin. The method for preparing drug microcapsules of cephalosporin consists in adding a konjak solution in carbon tetrachloride with a surfactant; a powder of cephalosporin is dissolved in water or ethanol and transferred into the konjak solution in carbon tetrachloride; once the antibiotic has formed an independent solid phase, carbinol and distilled water are added drop-by-drop; the prepared suspension of microcapsules is filtered, washed in acetone and dried; the process of microcapsules is carried out in the certain environment.

EFFECT: method provides simplifying and accelerating the process of microcapsules of water-soluble drug preparations.

7 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: composition for treating oxidative stress comprises ball-shaped lipoic acid or one of salts thereof, and at least one lipophilic medium. The lipoic acid balls represent particles consisting of an inert core (a nucleus) coated with lipoic acid which is coated with a first layer of an isolating polymer, and with a second polymer layer resistant (stable) at gastric pH. What is also described is a preparation for treating oxidative stress with an unified dose containing the above composition. The preparation is presented in the form of a soft gelatin capsule.

EFFECT: compositions according to the invention are stable in the lipophilic medium.

22 cl, 15 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to a method for preparing interferon-coated cephalosporin microcapsules. The declared method is characterized by mixing 1% aqueous solution of human leukocyte α- or β-interferon, cephalosporin powder and preparation E472c as a surfactant. The prepared mixture is stirred until the reaction components are fully dissolved, and after a transparent solution is generated, methanol 1 ml as a first non-solvent and then isopropyl alcohol 5 ml as a second non-solvent are slowly added drop-by-drop, then filtered, washed in acetone and dried.

EFFECT: invention provides preparing the high-yield cephalosporin microcapsules and ensuring the loss reduction.

8 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to chemical-pharmaceutical industry, and represents a method for preparing medicine microcapsules by non-solvent addition differing by the fact that the medical preparations are presented by the cephalosporin preparations, while a coating is polyvinyl alcohol that is precipitated by the addition of non-solvents that are carbinol and acetone at -25°C.

EFFECT: invention provides simplifying and accelerating the process for preparing the water-soluble cephalosporin microcapsules in polyvinyl alcohol, providing loss reduction in preparing the microcapsules (higher yield-mass).

16 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to pharmaceutical industry, namely to a microcapsules for preventing or treating hepatic disorders. The microcapsules for preventing or treating hepatic disorders containing a capsule coating, an encapsulating suspension of a therapeutically effective hepatocyte count in a physical contact with a hepatocyte-stimulating amount of erythropoietin. A method for preparing microcapsules involving preparing the suspension of the therapeutically effective hepatocyte count and the hepatocyte-stimulating amount of erythropoietin to bring them in physical contact with each other, and encapsulating the suspension of hepatocytes and erythropoietin in a biologically compatible capsule shell so that to form a microcapsule. A method for preventing or treating a hepatic disorder in an individual in need thereof involving administering the microcapsules in the individual in need thereof. The method for introducing the hepatocytes in the individual involving administering the microcapsules in the individual. A method for hepatocyte culture in a culture medium involving hepatocyte culture in the microcapsules in the appropriate culture medium.

EFFECT: microcapsules are effective for preventing or treating the hepatic disorders.

20 cl, 1 dwg, 1 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: group of inventions refers to capsule suspensions prepared by coacervation, and to methods for reducing leakage of the capsule content in such suspensions during storage. Substance of the method for reducing leakage of the capsule content consists in storage of the capsules prepared by coacervation, in the capsule suspension containing min. 20 wt %, a moisturiser, which is at least a moisturiser specified in sorbitol, glycerol, polyethylene glycol, propylene glycol, xylitol, erythritol or betaine. What is also presented is the above capsule suspension containing at least one capsule prepared by coacervation and at least 20 wt % of the above moisturiser.

EFFECT: using the above moisturiser in the amount of min 20 wt % provides reducing the leakage rate of the capsule content.

21 cl, 4 tbl, 2 ex, 2 dwg

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention relates to iron-enriched food product, which contains iron source in form of solid particles, where particles include core, containing iron alginate, and external layer, which contains calcium alginate, where particles are obtained by method which includes the following stages: (i) formation of core, which contains iron alginate, by contact of bioavailable water-soluble salt of iron and one water-soluble alginate salt, (ii) contact of core with water solution of calcium salt, in concentration, which constitutes from 0.025 M to concentration of lower than solution saturation point, and (iii) separation of obtained solid product. Iron-enriched food product is applied for prevention and treatment of iron deficiency conditions of people.

EFFECT: solid particles are applicable for enrichment of food products with iron and is characterised by improved load ability, as well as possesses good stability under standard storage and application conditions.

11 cl, 9 dwg, 13 tbl, 16 ex

FIELD: chemistry.

SUBSTANCE: present invention relates to an agent, having antibacterial and anti-protist activity, based on a hydrochloride of formula (1a-k) , where R=C6H5OCH2 (a); 4-CH3C6H4OCH2 (b); 4-OCH3C6H4OCH2 (c); 2-OCH3C6H4OCH2 (d); 4-FC6H4OCH2 (e); 2-ClC6H4OCH2 (f); C10H7OCH2 (g); 2,4-Cl2C6H3OCH2 (h); 4-BrC6H4OCH2 (i); 2-FC6H4 (j); 2-ClC6H4 (k).

EFFECT: obtaining a novel agent, having antibacterial and anti-protist activity, particularly with respect to Staphylococcus aureus and Escherichia coli bacteria, and moderate anti-protist activity with respect to elementary Colpoda steinii.

1 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to a compound of formula I

or a pharmaceutically acceptable salt thereof, where R1 is H or R1 and R2 together with a nitrogen group can form where A, B, C and D are independently selected from a group consisting of CR1a and N; where at least one of A, B, C and D is CR1a; where R1a is selected from a group consisting of H, -ORi, -SRii, -S(O)Riii, -C(O)NRvRvi and CF3, where Ri is selected from a group consisting of methyl, ethyl, propyl, hydroxyethyl, hydroxypropyl, 2-oxo-2-phenylethyl, butyl, acetonitrile and benzyl; Rii, Riii and Riv denote methyl; Rv and Rvi are independently selected from a group consisting of H, methyl, ethyl, hydroxyethyl, hydroxypropyl, diethyalminoethyl, phenyl, pyridinyl, methoxyethyl, hydroxyethoxyethyl, benzyl, phenylethyl, 2-hydroxy-1-hydroxymethyl-2-phenylethyl and carbomoylethyl, or Rv and RVi together form morpholine or ethyl ester of piperazine; R2 is selected from a group consisting of phenyl, naphthyl, pyrazolyl and C1-C8alkylene phenyl; R3 is C1-C8alkylene; R4 is selected from a group consisting of H, C1-C8alkyl and -C=NH(NH2). The invention also relates to compounds of formulae I-A

I-B I-C

I-D I-E

values of radicals of which are given in the claim; a method of treating said pathological conditions, a pharmaceutical composition based on said compounds, a method of identifying a Trp-p8 agonist and specific compounds.

EFFECT: obtaining compounds which are useful as Trp-p8 modulators.

25 cl, 19 dwg, 8 tbl, 17 ex

FIELD: chemistry.

SUBSTANCE: invention relates to organic chemistry and specifically to compounds of formula or a pharmaceutically acceptable salt of such a compound, where - X is a carbon atom and R1a and R2a together form a bond; or - X is a carbon atom, R1a and R2a together form a bond, and R1 and R2 together form a moiety , where the asterisk shows the bonding site of R2; or - X is a carbon atom, R1a is hydrogen or (C1-4)alkoxy, and R2a is hydrogen; and R1 and R2, unless indicated otherwise, independently denote hydrogen; (C1-5)alkyl; aryl, where aryl denotes naphthyl or phenyl, where said aryl is unsubstituted or independently mono- or disubstituted, where the substitutes are independently selected from a group consisting of (C1-4)alkyl, (C1-4) alkoxy and halogen; or heteroaryl, selected from pyridyl, thienyl, oxazolyl or thiazolyl, where said heteroaryl is unsubstituted; under the condition that if R2 is aryl or heteroaryl, R1 cannot be aryl or heteroaryl, where the aryl and heteroaryl are independently unsubstituted or substituted as defined above; R3 is hydrogen or -CO-R31; R31 is (C1-5)alkyl, (C1-3)fluoroalkyl or (C3-6)cycloalkyl; n equals 1, 2, 3 or 4; B is a -(CH2)m- group, where m equals an integer from 1 to 3; A is-(CH2)P-, where p equals 2 or 3; R4 is (C1-5)alkyl; W is , where R5 is hydrogen or (C1-5)alkyl; R8, R9 and R10 is independently hydrogen, halogen, (C1-5)alkyl, hydroxy, -(C1-5)alkoxy, -O-CO-(C1-5)alkyl, (C1-3)fluoroalkyl, (C1-3)fluoroalkoxy, -CO-(C1-5)alkoxy, (C1-2)alkoxy-(C1-4)alkoxy or -NH-CO-(C1-5)alkyl. The invention also relates to a pharmaceutical composition based on a compound of formula (I).

EFFECT: novel compounds which are useful as calcium channel blockers are obtained.

11 cl, 2 tbl, 166 ex

FIELD: chemistry.

SUBSTANCE: invention relates organic chemistry and specifically to novel pyridine amide derivatives of general formula I where n equals 1; R1 and R2 together denote a residue selected from a group consisting of -CH=N-NH- and -CH=CH-N=CH-, which is bonded in any desirable direction to the parent structure or R2 and R3 together denote a residue selected from a group consisting of -CH=N-NH-; -CR28=N-NH-; -S-C(=S)-NH-; -S-CR29=N-; -N=CR30-O-; -N=CH-NH-; -N=N-NH-; -O-CH2-O-; -CH2-CH2-CH2-NH, -O-CH2-CH2-O-; -N=CH-CH=N-; -CH=CH-CH=N-, which is bonded in any desirable direction to the parent structure, or R3 and R4 together denote a -CH=N-NH- residue, which is bonded in any desirable direction to the parent structure, or R4 and R5 together denote a -CH=N-NH- residue, which is bonded in any desirable direction to the parent structure, and the rest of the residues R1, R2, R3, R4 and R5, mutually independently, in each case denote H; where R28 denotes F; Cl; Br or I; R29 and R30, mutually independently, in each case denote -NH-C(=O)-R31; -NH2; -NH-S(=O)2-R32; -NH-C(=O)-O-R33; -S-R34; where R31, R32, R33 and R34, mutually independently, in each case denote a straight or branched, saturated, unsubstituted aliphatic C1-10 residue; R6 denotes H or denotes a straight or branched, saturated, unsubstituted aliphatic C1-10 residue; R7 denotes hydrogen or -OH; R denotes -CF3; or denotes an unsubstituted tert-butyl residue; T denotes C-R35 and U denotes C-R36, V denotes N and W denotes C-R38; where R35 and R36 denote H; where R38 denotes -NR40R41; -OR42 or -SR43; where R40, R41, R42 and R43, mutually independently, in each case denote a straight or branched, saturated, unsubstituted aliphatic C1-10 residue; or denote a saturated, unsubstituted 3-, 4-, 5-, 6-, 7-, 8- or 9-member cycloaliphatic residue, or where R40 and R41 in each case together with a nitrogen atom as a ring member which binds them together, form a saturated 6-member heterocycloaliphatic residue, optionally substituted with one R57 residue, where R57 denotes a straight or branched, saturated, unsubstituted aliphatic C1-10 residue; in each case in form of corresponding physiologically acceptable salts. The invention also relates to a method of producing a compound of formula I, a medicinal agent based on the compound of formula I and use of the compound of formula I.

EFFECT: obtaining novel amide derivatives of pyridine, useful in treating vanilloid receptor 1 mediated diseases.

25 cl, 1 tbl, 18 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: group of inventions relates to veterinary. Self-emulsifying veterinary antihelminth composition, contains: a) from approximately 15 to approximately 25% wt/vol. benzimidazole antihelminth medication; and (b) water-immiscible system of solvents, which contains lactone solvent in quantity from approximately 10% to approximately 40% wt/vol, ether oil in quantity from approximately 10 to approximately 35 wt/vol. and surface-active substance in quantity from approximately 30% to approximately 60% wt/vol. Self-emulsifying veterinary antihelminth composition, contains: a) from approximately 15% to approximately 25% wt/vol. triclabendazole; and b) water-immiscible system of solvents, which contains γ-hexalactone, 1,8-cineole and glycerides of polyethyleneglycol caprylic/capric acid. Methods of treating warm-blooded animals from parasites, which represent helminthes, include introduction one of claimed self-emulsifying veterinary antihelminth compositions to said animal. Method of preparing self-emulsifying veterinary antihelminth composition includes mixing (1) benzimidazole antihelminth medication with (2) water-immiscible system of solvents, which contains lactone solvent, ether oil and surface-active substance.

EFFECT: group of inventions ensures increased efficiency of animal treatment.

33 cl, 8 tbl, 8 ex, 4 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to novel carboxyl- or hydroxyl-substituted benzimidazole derivatives of formula (I), or pharmaceutically acceptable salts thereof, where R1 is selected from and , R2 is hydrogen; R3 is cyclohexyl or bicyclo[2.2.1]heptyl; R4 is phenyl, which is substituted in the 4th position with a halogen or a lower fluoroalkyl, or a pyridyl, which is substituted with 1 or 2 substitutes independently selected from halogen and a lower alkoxy group; R5 and R6 independently denote hydrogen or fluorine; R7 and R9 are independently selected from a group consisting of hydrogen, lower alkyl, halogen, lower alkoxy group, lower fluoroalkyl, lower fluoroalkoxy group and cyano group; R8 is -(CR12R13)n-COOH, where n equals 0, 1 or 2, and R12 and R13 are independently hydrogen or lower alkyl, or -O-(CR14R15)p-COOH, where p equals 1 or 2, and R14 and R15 are independently hydrogen or lower alkyl, or R14 and R15 together with the carbon atom with which they are bonded form a cycloalkyl ring, or R8 is tetrazole; R10 is a hydroxy group or -(CH2)p-COOH, where p equals 0 or 1; m equals 0 or 1; R11 is -COOH. The invention also relates to specific carboxyl- or hydroxyl-substituted benzimidazole derivatives and a pharmaceutical composition based on a compound of formula (I).

EFFECT: novel carboxyl- or hydroxyl-substituted benzimidazole derivatives, having selective activity with respect to farnesoid X receptor, are obtained.

26 cl, 126 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to medicine and pharmaceutical engineering, and concerns a combined antituberculous remedy containing isonicotinic acid hydrazide (isoniaside) and 2-benzylbenzimidazole (dibazol), and a polymer carrier that is an interpolymer complex of poly(meth)acrylic acid and polyethylene glycol, as well as a method for preparing it.

EFFECT: antituberculous remedy according to the invention has bacteriostatic and bactericidal action on tuberculosis mycobacteria; it provides the continuous maintainance of the active substance concentration at the therapeutically effective level; it causes no considerable blood variations; it is 2,5 times less toxic than isoniaside, and 10 times more active than isoniaside.

7 cl, 1 dwg, 11 tbl, 16 ex

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to pharmaceutical compositions containing (2-hydroxyethoxy)amide 6-(4-brom-2-chlorophenylamino)-7-fluor-3-methyl-3H-benzoimidazole-5-carboxylic acid hydrosulphate and solvates, crystalline forms and amorphous forms thereof, to using the above compositions as a drug; and to methods for preparing the above compositions.

EFFECT: preparing the new pharmaceutical compositions.

20 cl, 7 tbl, 7 ex, 5 dwg

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to a pharmaceutical composition for outpatient treatment and prevention of the cardiovascular diseases, containing therapeutic amounts of a vasodilator, a renin-angiotensin system inhibitor, a thrombocyte aggregation inhibitor, a cholesterol-lowering agent, and an antihypoxic agent. As a vasodilator, the declared composition contains an agent possessing α-adrenergic receptor antagonist action, and a thrombocyte aggregation inhibitor is presented by an ADP-dependent thrombocyte activation mechanism blocking agent.

EFFECT: invention provides the integrated therapeutic effect on the cardiovascular system after acute administration that improves the compliance with treatment regimen by the patient.

20 cl, 1 tbl, 15 ex

FIELD: chemistry.

SUBSTANCE: described are novel substituted O-[ω-(azol-1-yl)alkyl]-N-phenylcarbamates of general formula I:

,

where Z and Y=CH, N or together form an annulated ring with a C-CH=CH-CH=CH-C chain; or Y=CH, Z denotes a nitrogen atom, m=1-3; R=Hal, alkyl, alkoxycarbonyl, sulphamoyl, nitro etc, n=0-2, and pharmaceutically acceptable salts thereof, which are obtained by acylating the corresponding ω-(azol-1-yl)-1-alkanol with phenyl isocyanates in polar aprotic solvents at temperature of 20-100°C, preferably in the presence of organic bases as catalysts.

EFFECT: antiaggregatory activity of certain O-[ω-(azol-1-yl)alkyl]-N-phenylcarbamates of general formula I, eg O-[2-(1H-imidazol-1-yl)ethyl]-N-(3-trifluoromethylphenyl)carbamate hydrochloride is higher than that of dazoxybene.

FIELD: medicine, pharmaceutics.

SUBSTANCE: invention refers to a method for preparing drug microcapsules of cephalosporins in konjak gum in dioxane. According to the declared method, a konjak gum solution in dioxane is added with a surfactant that is a cephalosporin powder pre-dissolved in ethanol, and with carbinol after cephalosporin forms an independent solid phase. The prepared microcapsule suspension is filtered, washed in acetone and dried in a drying oven.

EFFECT: invention enables simplifying and accelerating the process of water-soluble drug microcapsules of cephalosporins in konjak gum, as well as increasing a mass yield.

4 ex

Up!