Hydro-electric pontoon power plant

FIELD: power industry.

SUBSTANCE: hydro-electric pontoon power plant includes anchored floating shell and vane wheels 6 linked to electric generators. Shell is made in the form of two parallel pontoons 7 attached rigidly to each other with wheels 6 mounted between them. Each pontoon 7 has parallelogram cross-section in longitudinal direction. Gap between pontoons 7 is limited in the front and rear ends by shields 10 and 2 connected rigidly to pontoons 7. At the top, pontoons 7 are rigidly connected by two cross-ties 9 and 3 I the form of stripes adjoining shields 10 and 2. Rectangular gap is formed between stripes 9 and 3 and pontoons 7. Equal angles 5 are positioned vertically in each corner of that rectangle, with their bottom ends connected rigidly to side surfaces of pontoons 7. Top ends protrude above pontoons 7. Cap 4 is mounted above wheels 6.

EFFECT: possible application of plant both in summer and in winter.

2 cl, 2 dwg

 

The invention relates to hydropower, in particular to the structures of devices to generate electricity using the energy of the hydraulic flow of the river.

Known installation to use the energy of water flow "Tunguska", containing a moored floating body and impeller, kinematically associated with the generators (see SU 1624198 A1, 30.01.1991, F03B17/06).

The disadvantage of this setup is that it is not adapted for use in the winter when the river is covered with ice.

The closest technical solution, selected as a prototype, is an installation comprising a moored floating body, installed in the flow of the river, and paddle wheels, kinematically associated with the generators (see SU 1749536 A1, 23.07.1992, F03B17/06).

A disadvantage of the known device is that it is also poorly adapted for use as an installation to generate electricity using the energy of the hydraulic flow of water under ice cover of rivers.

The objective of the invention is to provide a simple hydropower plant with the possibility of its use for electricity generation by the energy of the hydraulic flow of the river in both summer and winter.

This object is achieved in that in pontoon hydropower facility containing anchored labuci case, established in the flow of the river, and paddle wheels, kinematically associated with power, according to the invention, the floating body is made in the form of two parallel and rigidly interconnected pontoons, as well as with the possibility of installing between them paddle wheels, each of the pontoons in the longitudinal plane has the shape of a parallelogram, the sides of which are inclined towards the water in front of and behind the space between the pontoons is limited by the boards in the direction from the upper base to the waterline, which is rigidly attached to the pontoons, on top of the pontoons rigidly connected by two cross-beams in bands adjacent to the shields, and between these bands and pontoons formed window in the form of a rectangle, the size of which provide free passage of the blades during rotation of the paddle wheel in each corner of the rectangle vertically placed equal parts, the lower ends of which are rigidly attached to the lateral surfaces of the pontoons, and the top form ledges above the pontoons above the paddle wheels mounted hood in the form of a parallelepiped with the formation of the tight connection of its base with the surfaces of the pontoons and cross, and his fixation with corners.

In addition, to the outer bottom surface of the pontoons, in their extreme corners located slew and right of centerline, attached rigidly to the support of the ski, while the supporting surface of the ski placed on the bottom surface of the pontoons with the formation of ground clearance.

In Fig. 1 and 2 shows the pontoon hydropower plant: Fig. 1 provides a section "a-a", and Fig. 2 is a top view, where the cap 4 is not shown (cleared). The system includes a moored floating body, installed in the flow of the river, and impeller 6, kinematically connected through a shaft 8 with power, which is installed in the cavity of one of the pontoons 7 (not shown). The floating body is made in the form of two parallel and rigidly interconnected pontoons 7, and mounted between them a blade wheel 6. Each of the pontoons 7 in the longitudinal plane has the shape of a parallelogram, the sides of which are inclined towards the water flow (arrows). Front and rear clearance between the pontoons 7 is limited by the shields 10 and 2 in the direction from the upper base to the waterline (shown in Fig. 1 by the dashed line), which is rigidly attached to the pontoons 7. On top of the pontoons 7 rigidly connected by two cross-beams 9 and 3 in bands adjacent to the shields respectively 10 and 2. Between the cross members 9, 3 and pontoons 7 window formed in the shape of a rectangle, the size of which provide free passage of the blades during rotation of the paddle wheel 6. In CA the house corner of this rectangle vertically placed equal parts 5, the lower ends of which are rigidly attached to the lateral surfaces of the pontoons 7, and the upper form ledges above the pontoons 7. Over the paddle wheels 6 has a cap 4 in the form of a parallelepiped with the formation of the tight connection of its base with the surfaces of the pontoons 7 and cross-beams 9, 3, and his fixation with 5 corners. For example, for fixing cap 4 corners 5 may be threaded holes, and in the walls of the cap 4 to the corresponding bolt holes (not shown). To the outer bottom surface of the pontoons 7, in their extreme corners, located left and right of centerline, attached rigidly to the support of the ski 12. While supporting surface of the ski 12 are placed from the bottom surface of the pontoons 7 with the formation of ground clearance.

The principle of operation is the following. Under ice cover 1 water moves in the direction shown by the straight arrow. Thus the flow of water affects the impeller 6, and the torque is transmitted through the shafts 8 on the generators (not shown), which produce an electric current.

Install the mount on the shore in the summer time, when the river is covered with ice. Then lower it into the water: the installation moves, gliding skis 12 first surface of the earth, and then on the bottom 11 of the river. This clearance prevents the possibility of the damaged blade wheels 6. After placing the installation in the flow of water her anchors (not shown). The installation must be submerged in water up to the level of the waterline. If necessary, it DeGroat and simultaneously align along this line through ballast. In this position, the installation creates an airtight working chamber which is above is limited by the cap 4, and the cross members 9 and 3, front and rear panels 10 and 2, and bottom - water. In summer the water passes through the installation, touching the surface of the bottom edges of panels 10 and 2. With the onset of winter on the river is formed ice cover 1. Over time its thickness increases toward the bottom of the river. The lower edges of the boards 10 and 2 occur in the ice, thereby increasing the tightness of the specified cavity installation. Because the cavity of the installation does not have direct contact with cold air and in the winter the water in the river (under the ice) has a positive temperature plus 4 C), the water in this cavity does not freeze. In addition, this contributes to the interaction of a blade wheel 6 with the water flow. As a result, the installation can be used in both summer and winter. If necessary, spring installation hollow out along its perimeter. Remove the anchor and pull it ashore. When the ice breaks up, the installation again placed in the water stream.

Based on the proposed technical solutions to depict assetsa possible to create a simple hydropower installation with the possibility of its use for electricity generation by the energy of the hydraulic flow of the river in the summer and in winter, when the river is covered with ice.

1. Pontoon hydropower installation comprising a moored floating body, installed in the flow of the river, and paddle wheels, kinematically associated with generators, characterized in that the floating body is made in the form of two parallel and rigidly interconnected pontoons, as well as with the possibility of installing between them paddle wheels, each of the pontoons in the longitudinal plane has the shape of a parallelogram, the sides of which are inclined towards the water in front of and behind the space between the pontoons is limited by the boards in the direction from the upper base to the waterline, which is rigidly attached to the pontoons, on top of the pontoons rigidly connected by two cross bars in the form of strips adjacent to the shields, and between these bands and the pontoons window formed in the shape of a rectangle, the size of which provide free passage of the blades during rotation of the paddle wheel in each corner of the rectangle vertically placed equal parts, the lower ends of which are rigidly attached to the lateral surfaces of the pontoons, and the top form ledges above the pontoons above the paddle wheels mounted hood in the form of a parallelepiped with the formation of the tight connection of its base with the surfaces of the pontoons and cross, as well as in the possibility of his fixation with the corners.

2. The device according to claim 1, wherein the outer bottom surface of the pontoons, in their extreme corners, located left and right of centerline, attached rigidly to the support of the ski, while the supporting surface of the ski placed on the bottom surface of the pontoons with the formation of ground clearance.



 

Same patents:

FIELD: power industry.

SUBSTANCE: conversion device of incoming water flow to electric energy includes a ship brought into movement with a propeller screw, which is made in the form of a catamaran ship, a conveyor with shafts 8 and an endless belt with blades fixed on it. Belt edges are perforated. Shafts 8 are equipped with radial pins entering perforation holes and connected to electric generator 3 shaft. An operating channel is formed with two conveyors with endless belts on vertical shafts 8 in cutouts of housing 1 on each of the catamaran ship semi-housings below the water line. Each of the catamaran ship semi-housings is fully enveloped with its endless belt with the blades fixed on it and made from material with positive buoyancy. In nose subsurface part of housing 1 there located is water intake 6 with water drains to the rear part of the ship. Storage battery 2 with electric motor 5 having an actuator on line of shafts 8, and control system 4 are located in housing 1.

EFFECT: increasing efficiency, improving operating reliability and power of the ship's power plant and associated generation of electric energy for different consumers.

2 dwg

FIELD: electricity.

SUBSTANCE: submersible microhydro power plant for electric energy generation includes hydraulic turbine with vertical rotation axis connected to electric generator, also it includes water flow formers and device protecting against floating objects. Lower end of runner shaft 3 is connected directly to generator shaft 17 by means of splined joint. Thrust bearing of runner is rigidly fixed in upper cover of electric generator housing 15 so that it is simultaneously a pilot bearing for electric generator. Electric generator is end-type, water-filled and is located under hydraulic turbine. Hydraulic turbine housing 1 and electric generator housing 15 form single structure monoblock.

EFFECT: reducing dimensions and weight, generating cheaper electric energy due to absence of investments to plants building, simplifying structure and erection works method, reducing maintenance costs.

2 dwg

FIELD: electricity.

SUBSTANCE: tidal-wave power plant is made on the basis of two turbines 1 and 2. Each of turbines 1 and 2 comprises at least two disks 3, connected to each other by axes 4, on which blades 5 are hingedly fixed, displacement of which is limited by main and additional fixators 6 and 7. Both turbines 1 and 2 are hingedly installed on a single axis 8, fixed in a frame 9, a part of which is fixed on the bottom, and the other part includes a site 10 on the surface, where a reducer 11 and a generator 12 are placed. In one turbine the main fixators 6 are arranged at the right side of the blades 5, while in the other turbine the main fixators 6 are located at the left side of the blades 5. Adjacent discs 3 of turbines 1 and 2 are equipped with main conical gears, between which there are additional conical gears hingedly fixed on an axis 14, which is perpendicular to the single axis 8 of turbines 1 and 2. A power takeoff shaft 13 reaching a site 10 on the surface is stiffly fixed to one of additional conical gears.

EFFECT: provision of higher efficiency factor due to operation of turbines in three squares and at any direction of a flow, with simultaneous preservation of design simplicity.

6 dwg

FIELD: power engineering.

SUBSTANCE: hydraulic energy-generating plant 1 comprises a body 2 with a hole 8 for supply of water, arranged at the discharge side of the hydraulic canal, a hole 9 for water discharge, arranged at its bottom side, a channel 25, providing for connection of holes 8 and 9, a board 6 for collection of water, a vertical axial turbine 3, a generator 4 and a movable lock 5. The board 6 is arranged at the edge of the hole 8 and collects water in the hole 8 by means of catching and accumulating water flowing along the hydraulic canal. The turbine 3 is installed with the possibility of rotation in the channel 25 and comprises rotor blades. A generator generates energy, accepting the rotary force of the turbine 3. The lock 5 is made as capable of controlling the level of accumulated water at the discharge side of the hydraulic canal by means of variation of the area of the cross section of water flow, acting at the upper end of the blade of the turbine 3 as it arrives from the hole 8.

EFFECT: development of a hydraulic energy-generating plant, made with the capability to adjust water level at the discharge side and providing for stable quantity of generated energy with simple maintenance.

6 cl, 30 dwg

FIELD: power engineering.

SUBSTANCE: flow-through power generator of horizontal type comprises a stator and a rotor placed on a single axis with a turbine driven by water flow forces. The rotor is made as hollow. The inner cavity of the rotor is formed as a Laval nozzle. Turbine blades are fixed inside the cavity and are directed towards the axis of rotation, being arranged along the inner surface of the rotor following helical lines. The submerged power plant on the stationary platform comprises a group of power generators installed towards the water flow on stationary supports. Supports for installation of power generators have location beds equipped with receiving cones and are arranged at the distance that is multiple to the length of the power generator section. Power generators are installed at the different depth from the water surface.

EFFECT: development of a simple and reliable power generator and a submerged power plant with easy maintenance.

8 cl, 3 dwg

FIELD: power engineering.

SUBSTANCE: bottom hydraulic power plant comprises turbines, made in the form of screws 6, installed in a river flow and lowered to its bottom, for instance, from a bridge rack 1 or from a float base, a current generator 15 and its drive. The outer circuit of each turbine represents a cylindrical shell, on the outer side with a coupling 8, for instance, of spindle type, which connects the augers 6, if there are more than one of them, into blocks that may close the entire clear section of the river, if required. Each turbine in the block or the entire block are fixed in bearings on a movable frame 3 that moves preferably in the vertical plane.

EFFECT: invention makes it possible to simplify design and to increase its reliability, development of a hydraulic power plant with submerged turbines, which may take maximum of energy potential from a river during the year.

2 dwg

FIELD: power engineering.

SUBSTANCE: hydraulic turbine with self-closing blades comprises a shaft and a row of identical blades, forming at least one impeller. Blades are connected with the shaft with the help of axes 2. All blades consist of a row of plates and a holder 13 of a rotation angle. Two rectangular plates are attached to the axis 2 installed on the shaft with the help of bearings. Two triangular plates are fixed to each of the lower and upper part of rectangular plates of the blade, and these plates are connected to each other and to rectangular plates with the help of axes and bearings. Inside the blade 7 there is a holder 13 of a rotation angle comprising a frame 22, which is rigidly connected to the axis 2 installed on the shaft. Along the frame 22 with the help of bearings there are levers moving with one end, being connected to each other with an axis, by other ends the levers are connected to appropriate rectangular plates with the help of hinged joints. Inside the frame 22 there are two springs installed in the corners.

EFFECT: reduced impact processes.

7 dwg

FIELD: power engineering.

SUBSTANCE: method for conversion of energy of air or water flow currents is characterised by usage of a spring 8, with which a wing 1 or an airfoil is connected kinematically via a movable axis. The wing 1 or the airfoil is connected with the spring 8 with a sling 4. Directly near the wing 1 the sling 4 is equipped with auxiliary rear and front bridles 5 and 6. The bridles 5 and 6 limit the attack angle from the minimum to the maximum position by means of movement of the axis relative to the centre of forces application, creating a torque, which in its turn results in change of the attack angle and sling 4 tension.

EFFECT: simplified design, reduced material intensity, increased manufacturability and as a result lower specific cost of a generated kW*hr of electric energy.

2 cl, 7 dwg

FIELD: power engineering.

SUBSTANCE: power plant for conversion of energy of air or water flow currents comprises a power takeoff shaft, with which a wing 1 or an airfoil is connected kinematically via a movable axis and introduced into the flow along with its motion. The power takeoff shaft is arranged in the form of a crankshaft 5. The wing 1 or the airfoil is connected with the crankshaft 5 with a sling 4. Directly near the wing 1 the sling 4 has auxiliary rear and front slings with a function of attack angle limitation. The power plant comprises a device for control of the attack angle 2 from the minimum to the maximum level, made as capable of moving the spring-loaded axis relative to the centre of application of aerodynamic forces depending on direction of crankshaft 5 movement, and as a result from head of air or water medium.

EFFECT: simplified design, reduced material intensity, increased manufacturability and lower specific cost of a generated kW*hr of electric energy.

7 dwg

FIELD: power engineering.

SUBSTANCE: method to convert energy of air or water flow currents is characterised by using of a power takeoff shaft, with which a wing 1 or an airfoil is kinematically connected via a movable axis being introduced into the flow along with its movement. The power takeoff shaft is arranged in the form of a crankshaft 5. The wing 1 or the airfoil is connected with the crankshaft 5 using a sling 4, equipped with additional short slings in close proximity of the wing. Slings provide for limitation of the attack angle of the wing 1 in the specified range. With the help of the device to control the attack angle 2 the attack angle of the wing 1 is changed with a jump from the minimum one to the maximum one, moving with the help of the movable mass of the accelerometer rigidly connected with a cam the axis of the main sling relative to the centre of application of aerodynamic forces depending on the direction of the crankshaft 5 motion.

EFFECT: simplified design of a converter realised on the basis of the method, reduced metal intensity, higher manufacturability and as a result reduction of specific cost of a produced kW hour of power.

7 dwg

Aero hpp // 2500854

FIELD: power engineering.

SUBSTANCE: device comprises a lower reach 1, an upper reach 2, a water conduit 3, a turbogenerator 4 and surfaces 5. Surfaces 5 are made as capable of receiving atmospheric moisture from the air flow and delivering it to the upper reach. Besides, surfaces 5 are raised to the height above the dew point for these atmospheric conditions. To support the surfaces 5, balloons or airships 6 are used.

EFFECT: expansion of functional capabilities and increased specific capacity of HPP by using maximum possible difference of heights between upper and lower reaches from height of actual condensation of atmospheric moisture in a cloud to ground level.

2 dwg

FIELD: power engineering.

SUBSTANCE: bottom hydraulic power plant comprises turbines, made in the form of screws 6, installed in a river flow and lowered to its bottom, for instance, from a bridge rack 1 or from a float base, a current generator 15 and its drive. The outer circuit of each turbine represents a cylindrical shell, on the outer side with a coupling 8, for instance, of spindle type, which connects the augers 6, if there are more than one of them, into blocks that may close the entire clear section of the river, if required. Each turbine in the block or the entire block are fixed in bearings on a movable frame 3 that moves preferably in the vertical plane.

EFFECT: invention makes it possible to simplify design and to increase its reliability, development of a hydraulic power plant with submerged turbines, which may take maximum of energy potential from a river during the year.

2 dwg

FIELD: power industry.

SUBSTANCE: conversion method of falling water energy to electric energy involves a water turbine and an electric generator, which are connected to each other. The following is arranged along the bed of a mountain river flowing on the mountain slope: horizontal and vertical water passages connected to each other and filled with water flow. Water turbine is arranged inside lower part of a vertical water passage. Water turbine is connected through a special device to electric generator. Electric generator is connected through wires to a consumer of the same energy.

EFFECT: creation of a hydraulic power plant of a new generation, which do not disturb ecological situation of the environment.

2 cl, 2 dwg

FIELD: power engineering.

SUBSTANCE: device to convert energy of spent water into electric energy comprises a vertical forward-flow channel in the form of a pipe with a hydraulic generator connected to a load in the lower part, in which there is a hydraulic generator screw with blades. The device additionally includes an expanding reservoir, equipped with washing waves, lower and upper air nozzles, providing for accordingly supply of ascending air flow, which additionally rotates the screw blades, and its bleeding. The screw blades have a cone-shaped section, which prevents accumulation of deposits in areas of connection with the shaft. There is a control system, which accumulates and redistributed the produced energy.

EFFECT: increased operational reliability and provision of stable operation.

2 dwg

Hydraulic turbine // 2487261

FIELD: machine building.

SUBSTANCE: hydraulic turbine comprises horizontal shaft 4 with curved vanes 5 fitted thereon. Half of said vanes does not interact with flow because they are located inside large seat 2 while vanes interacting with flow have their bulge directed upward. Wall 6 of larger seat 2 opposite shaft 4 changes into flange 8 varying flow direction 12 toward the side opposite the wall of tube 1. This prevents depositions effluents sediments nearby shaft 4 while peripheral part of vanes 5 is self-cleaned due to centrifugal force, its configuration and that of seat 2.

EFFECT: reliable operation.

3 dwg

FIELD: power engineering.

SUBSTANCE: vacuum hydraulic plant comprises a tight chamber 25, where pressure is pulled below atmospheric one, and where water is delivered. In the tight chamber 25 on one rope 17 there are tight cylinders 19 and 9 as capable in their balanced position to displace or charge water volume and spin hydraulic turbines 4 and 21. Hydraulic turbines 4 and 21 with power generators 5 and 20 are installed in an injection and drain pipelines 3 and 22 and installed above a water reservoir 30. For filtration of water at the ends of pipelines 3 and 22 there are meshy filters 23 and 29 arranged. For desalination of sea water or production of steam with its further condensation the tight chamber 25 via the pipeline with the gate valve is connected to a high-pressure ejector. One end of the ejector is connected with a fresh water load via a heat load. The other end of the ejector is serially connected with a source of high-pressure. At the inlet and outlet of the tight chamber 25 there are valves 28 and 24 installed.

EFFECT: invention provides for capability of desalination, filtration, heating or cooling of water.

4 cl, 9 dwg

FIELD: power industry.

SUBSTANCE: hydroelectric power plant includes water intake located outside bed of river, main capacity, pressure waterway and waterway of turbines. Along the whole bed of river there arranged is n regulating water reservoirs for water collection, each of which is equipped with a filling channel connected to the river bed and made in upper place as to level and dam with the height of up to upper level, which is made in lower place as to level. Discharge pipeline interconnected with river bed and equipped with a gate valve is installed at lower point of each regulating water reservoir. The main capacity is made in the form of the main water reservoir located below regulating water reservoirs in the section with high level difference and equipped with filling channel connected to the river bed, and dam with height of up to upper level, which are made in upper and lower places respectively as to water level. Pressure waterway is installed downstream as to level of the main water reservoir and made in the form of pressure pipelines with length of not less than 12-15 km depending on river water level difference in order to obtain the required head, which leave the main water reservoir. Pressure pipelines consist of winter pressure pipeline for minimum water flow rate and n summer pressure pipelines for maximum water flow rate. Pressure pipelines are connected to turbine waterway. Hydroelectric power plant also includes compensation water body located at the head level of turbine waterway, which is connected to waterway of turbines and equipped with pump group.

EFFECT: increasing operating efficiency of hydroelectric power plant.

4 dwg

FIELD: power engineering.

SUBSTANCE: rotor wind hydraulic engine comprises a shaft connected with a disc, between which blades are installed on their axes along the periphery as capable of their rotation inside and outside rotors. Blades are equipped with levers connected with one of discs by means of flexible joints, rotary supports and tensioning devices. In the disc there are holes, flexible rods are pulled via rotary supports and holes downwards, tensioning devices are arranged in the form of weights attached to ends of flexible traction rods, and between weights and surface of the disc there are additionally arranged cocked springs for compression and sliding bushings on flexible traction rods. Weights, springs for compression and sliding bushings at ends of flexible traction rods may be arranged in pipes attached by some ends to the disc, besides, at the other ends of pipes there are adjustment screws that fix initial position of weights.

EFFECT: using a device will ensure higher safety, higher efficiency factor, and also increased range of rotor rotations control as flow speeds vary within wide limits.

2 cl, 2 dwg

FIELD: electricity.

SUBSTANCE: at the moment of small hydro-electric station start-up all stages of ballast load are started, when rated frequency of generator 2 rotation is achieved, an asynchronous electric motor of a water supply pump 5 is started with a device of reactive power compensation. At the same time the load is redistributed between the ballast load and the started asynchronous electric motor of the water supply pump 5 with the device of individual compensation of reactive power, therefore voltage at the generator 2 stator changes insignificantly. Then upon completion of a transition process, an electric motor of a vacuum pump 6 is started with a device of individual compensation of reactive power. Upon completion of the transition process, similarly electric motors of the first milk pump 7, the second milk pump 8 and a pump of a milk cooler 9 are started, which, due to low capacity in respect to a generator of the small hydro-electric station, slightly reduce voltage at its leads, and therefore electromagnet torque at all electric motors operating under load practically does not change.

EFFECT: higher efficiency of small hydro-electric station application and improved stability of operation of milking system process equipment.

5 dwg

FIELD: electricity.

SUBSTANCE: system of autonomous bridge lighting comprises a hydropower plant connected to a source of light and installed under water and comprising a reactive screw 1, a power generator 2, a planetary multiplier 4, arranged on a single shaft 3 between 1 and the power generator 2, and a garbage-protecting grid 6. The shaft 3 is arranged along a river watercourse. The screw 1, the multiplier 4 and the power generator 2 are installed in a single body 5 with expanded inlet and outlet holes. The grid 6 is installed in front of the screw 3 in the inlet hole of the body 5. The plant is fixed on a bridge support 7 on guides 9 as capable of vertical displacement and fixation. The system comprises a voltage frequency converter 13, connected with the power generator 2 and the light source, and a accumulator 14, connected with the converter 13, and is also equipped with a hoist 10, connected with the body 5. The converter 13, the accumulator 14 and the hoist 10 are installed on a mounting site 11, mounted into the upper part of the bridge support 7.

EFFECT: higher efficiency of a lighting system due to increased speed of river watercourse as it flows around a support and increased frequency of power generator shaft rotation.

3 cl, 1 dwg

Generator plant // 2247460

FIELD: mobile generator plants.

SUBSTANCE: proposed generator plant has frame that mounts power unit, foot-operated air pump, and compressed-air cylinders whose air lines communicate with generator plant. Control panel is electrically connected to output of electric generator vertically installed on generator plant housing and mechanically coupled with exciter and power unit made in the form of vertical-shaft pneumostatic motor. The latter has sealed case with inlet, outlet, and safety valves closed with cover that accommodates vertical rotor mounted in case and cover bearings and made in the form of shaft with two power drives attached thereto by means of U-shaped frames. Power drives are installed on either side of vertical shaft and spaced 180 deg. apart in horizontal plane. Each of them has a number of similar members symmetrically mounted one on top of other, their quantity being dependent of desired power. Each member is essentially rhombic plate made of light-mass and high-strength metal whose longitudinal axis is longest diagonal parallel to that of other power drive. Through ducts are provided on front ends of rhomb and L-shaped blind ducts, on its rear butt-ends. All these ducts are closed with covers kinematically coupled with drive cylinder piston. Compressed air fed to sealed housing opens covers, and unbalanced forces are built up on each member which set power unit in rotary motion. Air evacuation from sealed housing closes covers with the result that no forces are built up on drive members.

EFFECT: enhanced power output and torque.

2 cl, 21 dwg

Up!