Method for controlling soil respiration in plantings

FIELD: agriculture.

SUBSTANCE: controlled area in the planting is chosen and prepared, the procedure for controlling of soil respiration is carried out in the chosen controlled area in the planting by measuring the amount of accumulation (loss) of gaseous respiratory substrate CO2 (O2) in a sealed chamber, with which the controlled area is covered. Preparation of controlled area additionally includes such sowing seeds when a part of the area is left unsown. For measurement two different sealed chambers are used separately and alternately, with one of which the part of controlled area of the planting just sown with plants is covered entirely, and with another one additionally to the above area the unsown part of the controlled area of the planting is covered partially or completely. At that the amount of soil respiration attributable to the square of the controlled area of planting is calculated by determining the difference between the measurement results obtained with the above sealed chambers, multiplied by the ratio of the square of the controlled area of planting to the difference of squares of bases of above two sealed chambers.

EFFECT: ability to study in the field, and at the same time the interaction integrity of the root and ground parts of plants is not violated.

1 dwg

 

The invention is intended for use in agriculture for crop monitoring and agricultural land, as well as for the ecological landscaping with the use of green technologies.

Organic life in the sowing is carried out in two environments: the near-surface air and soil. The biological activity in surface air accompanied photosynthetic and respiratory CO2and O2- gas exchange above-ground parts of plants and in the soil - respiration of the root system of plants, soil animals and microorganisms.

Diffusive gas exchange fluxes of carbon dioxide and oxygen from the aerial parts of plants and soil accumulated in aerotop (surface air that is enclosed in the space bounded by the ground surface and the upper boundary of the vegetation cover), forming its carbon dioxide and oxygen concentration background (Century. Larger, "plant Ecology", Publishing house "Mir", Moscow, 1978, s).

For a correct evaluation of gas exchange activity in the crop it is important to highlight in the General dynamics of change of this concentration of background contributions separately by soil respiration and gas exchange aboveground biomass of plants.

Taking into account the available experience (SV Norkin, Affodrable, "Energy and mass transfer in the system of plant - soil - air", Leningrad, Hydrometeors is at, 1975, s-270) actual at present is the problem of separation of soil respiratory components in the total flow of gas exchange in the crop.

In the known methods for the control of soil respiration using different methods of preparation of controlled area seeding and measurement of gas exchange.

Known the following methods of training: non-destructive, when there is continuity of the plants, and destructive, when the aboveground part of the plant is cut from the root.

For measurement of gas exchange used cumulative volume in a sealed chamber, which served at the time of measurement controlled area seeding. As a result, the camera naturally as a result of processes of photosynthesis and respiration accumulate (loss) gaseous photosynthetic and respiratory substrate CO2, the amount of which is measured by the infrared detector.

Known non-destructive method of monitoring respiration of intact plants described in the work: Erust - Manfred Wildenroth. Methodik der Erfassung des Gas - wechsels in Sprob - und Wurzelsystemen intakter Yungpflanzen. Wissenschaftliche Zeitschrift,der Humboldt - Universitat Zu Berlin. 6.1976.

Inside the sealed chamber has a partition which divides the chamber into two parts: the upper, which houses the above-ground part of plants, with lower root part. The stalk of each plant is recorded in one of the holes, available in p is regalodge. Air insulation along the stem by using any elastic seal, such as a jelly-like agar-agar.

The disadvantage of this method is that controlled this way the plant is a simplified model compared to the phytocenosis "in nature" because of the lack of free vzdukhotekh between the root part and aerocool, and in addition, the known method is unsuitable for use in the field.

Known destructive control method described in the paper: Kolosov SR "Method for the determination of CO2gas exchange of crops". Proceedings of the Komi scientific center of Ur Of the USSR Academy of Sciences, No. 94, Syktyvkar, 1988, s.89-95.

In the known method the control of soil respiration is carried out using sealed chamber, which serves the plot seeding with pre-remote aerial part of plants.

The disadvantage of this method of control is to instill in the measurement results of the additional uncertainty caused by the traumatic effects on plants.

The goal was to develop a way of monitoring the respiration of the soil in the planting, equally suitable for use both in laboratory and in field conditions and at the same time not violating the integrity of the interaction between the root and aerial parts of plants.

This goal is achieved due to the fact at the stage of preparation on the selected control plot soil is conducted additionally uneven seeding, leaving part of the site is free from sowing, whereas another part of the sow as well as the entire planting. Such distribution may be, for example, such as shown in figure 1. Inside planting 1 emit a controlled area boundary 2, which is UN-cropped part 3 and cropped part 4.

When this is taken into account that in a sufficiently developed crop root systems of individual plants, overlapping each other and together form a horizontally homogeneous distribution of root mass below the soil surface.

Therefore, we can assume that the same will be horizontally homogeneous respiratory flow throughout the controlled area, including free from plant part.

As can be seen, in this case, do not lose the relationship between the individual components of sowing, and only a few deformed structure planting. The possibility to control the same sowing repeatedly at different stages of development.

Another hallmark is the change control procedure of soil respiration using instead one of two different sealed chambers with different footprint. One of these chambers served only fully planted some plants 4 controlled area seeding. The other camera has a base, the dimensions of which allow, in addition sowed the Asti, to cover fully or partially UN-cropped part 3.

These cameras can have, for example, the shape of a cylinder with height, allows you to easily host plants.

The claimed method is performed by measuring gas exchange those objects, which separately cover each of the above two cameras.

As a result, the camera, covering cropped part 4 of the controlled area, measure the total gas consisting of a gas above-ground parts of plants and soil respiration in this square. At the same time in another cell with a large base, there is additional accumulation (loss) respiratory gaseous substrate CO2(O2), caused by the respiration of soil on UN-cropped plants area. In the end, determining the difference between the results of the two measurements and multiplying this difference by the value of the ratio of the area controlled area sown to the difference of the squares of the bases of the two cameras, counting the breath of the soil in the entire area controlled area seeding.

Method of controlling soil respiration in planting, including the choice of sowing controlled area and its preparation, as well as the procedure of control of soil respiration in the selected planting controlled area by measuring the magnitude of the savings (loss) respiratory gaseous substrate CO2(O2) sealed the chamber, which cover the controlled area planting, characterized in that the preparation of controlled area additionally includes such seeding, in which part of the controlled area left UN-cropped, and to measure the use of separately and alternately two different sealed chamber, with one of whom served only seeded plants part of the controlled area planting, and with the other in addition to the above square is served partially or also completely UN-cropped part of the controlled area planting, and the magnitude of soil respiration attributable to the area controlled area planting, calculated by determining the difference between the measurement results obtained using the specified above sealed chambers, multiplied by the value of the ratio of the area controlled area sown to the difference of the squares of the basis of the above two sealed chambers.



 

Same patents:

FIELD: ecology.

SUBSTANCE: samples of uncontaminated background soil and contaminated with heavy metals or crude oil and oil products are taken, and for each pair of samples of soil the number of ammonifying bacteria, the number of microscopic fungi, the abundance of bacteria of the genus Azotobacter, the catalase activity, the invertase activity, the germination of radish is determined. IRS of the soil is calculated as follows: IRS =Σ( Pconti/Pfoni)×100%/n, where Pconti is the value of i-th index (number of ammonifying bacteria, million/g, the number of microscopic fungi, million/g, the abundance of bacteria of the genus Azotobacter, %, catalase activity, ml O2/min, the invertase activity, ml, glucose/24 h, the germination of radish, %, for contaminated soil; Pfoni is the value of i-th/min, the indicator for uncontaminated soil; n is the number of indicators (n=6). The environmental condition of the soil is determined according to reduction of the IRS. If the IRS value in the contaminated soil is over 95%, the normal ecological condition of the soil is stated. In reduction of the IRS to 90-95% the satisfactory condition is stated. In reduction of the IRS to 75-90% the poor condition is stated. In reduction of the IRS below 75% the catastrophic condition is stated.

EFFECT: method enables to assess quickly and accurately the environmental condition of the soil.

17 tbl, 2 ex

FIELD: construction.

SUBSTANCE: method to determine frost heave of soil during freezing of a seasonally thawing layer includes drilling of a well before start of its thawing, sampling of soil, measurement of depth of seasonal thawing ξ, definition of dry soil density in samples ρd,th. In addition wells are drilled after freezing of the seasonally thawing layer, on the samples they additionally define density of dry soil after freezing of the seasonally thawing layer ρd,f, and the heave value is determined in accordance with the given dependence.

EFFECT: reduced labour intensiveness of works, increased accuracy of determination of heaving value, provision of material intensity reduction.

FIELD: physics.

SUBSTANCE: method involves probing an underlying surface having test areas with a multichannel spectrometer mounted on a space vehicle to obtain images on each channel; calculating, through zonal ratios of signal amplitude values in channels, partial degradation indices, specifically percentage content of humus (H), salinity index (NSI) and moisture loss index (W); determining the integral degradation index D based on a multi-parameter regressive relationship of the type: D=(H0H)1,9(NSINSI0)0,5(W0W)0,3; recalculating image brightness pixel values in the scale of the calculated degradation index for each pixel; selecting outlines of resultant images thereof with the established gradations of the degree of degradation. (H0, NSI0, W0) are values of partial degradation indices for reference areas.

EFFECT: faster and more reliable determination of degree of degradation of soil cover.

5 dwg, 3 tbl

FIELD: mining.

SUBSTANCE: method includes installation of a device into a vertical position, and the device is a metal hollow cylinder enclosed into the body, along the inner and outer wall of which there is a cutting element welded in the form of a spiral, lowering of the cylinder to the specified depth during its rotation with cutting of a soil sample of cylindrical shape.

EFFECT: simplification and increased reliability in production of samples.

1 dwg

FIELD: agriculture.

SUBSTANCE: method includes device of cutting, measurement of parameters of soil layer and calculation. In the layer of peat ash the mass of diatomic algae shells is measured per one unit of plot area. The value of pyrogenic change of peat layer thickness is calculated by the following formula: H=α·m, where H - is the value of pyrogenic change of peat layer thickness, cm; α - is the coefficient, cm·m2/g; n - is mass of diatomic algae shells per unit of plot area, g/m2. The coefficient α is evaluate according to the formula: α=H1/m1, where H1 - is the peat layer thickness of the analogue plot, cm; and m1 - is the mass of diatomic algae shells per unit of analogue plot area, g/m2.

EFFECT: method enables calculate quickly and accurately the pyrogenic change value of peat layer thickness.

1 ex

FIELD: chemistry.

SUBSTANCE: method involves biotesting based on the number of organisms at optimum soil moisture. Soil toxicty is determined from the nitrogen-fixing activity legume bacteria which form tubercles on the root system of legume grasses in the 15-20 cm layer of the soil 2-3 weeks after spring aftergrowing and before the flowering period. Soil toxicity is determined from the inner colour of the nitrogen-fixing tubercles (pink or red); if more than 50% of the tubercles are coloured, the state of the soil is considered satisfactory, if 20-50% of the tubercles are coloured, the state of the soil is considered an environmental risk and if less than 20% of tubercles are coloured, the state of the soil is considered an environmental disaster.

EFFECT: method enables rapid and accurate evaluation of the degree of environmental pollution.

1 tbl, 6 ex

FIELD: oil and gas industry.

SUBSTANCE: in the device containing a tubular furnace equipped with a heater and a temperature control - the temperature programmer unit, located vertically and provided with cylindrical container with a soil sample, which is coaxially located in it. the inlet of the above furnace is connected to a pipeline with an activator of inert gas flow rate, and the outlet is connected through a quick-detachable connection to a hydrocarbon sensor represented with a flame ionisation detector, at the inlet of which a quartz capillary is installed, and the soil container is made in the form of a thin-wall shell from stainless steel with a porous bottom facing the tubular furnace inlet.

EFFECT: higher accuracy and informativity of analysis.

3 cl, 1 dwg

FIELD: agriculture.

SUBSTANCE: method includes geodetic measurements of the land plot area, three-dimensional measurement of the land plot, based on the measurement of the coordinate component of the resource parameters in different parts of this plot. Resource soil parameters of land plot are determined for each time period of operation taking into account the discrete disposal of part of the resources that were available at the beginning of the measurement period. In determining the resource parameters of the soil its biological activity is additionally measured on the stream of direct solar radiation reaching the horizontal surface of the soil.

EFFECT: method enables to improve the accuracy of measurement the resource parameters of the particular land plot.

1 tbl, 1 ex

FIELD: agriculture.

SUBSTANCE: method includes separation of air-dry aggregates. The separated aggregates are destroyed to the size smaller than 0.25 mm, moistened, dried, the self-collected structural units are separated from the structureless particles by circulating shaking (1.5 hours, 25 rpm), followed by sieving on a sieve of 0.25 mm and separation of water-resistant aggregates.

EFFECT: method enables to separate from the total soil mass the part which is the most active in terms of structure formation - the components capable to form spontaneously the aggregates after wetting-drying, enables to estimate the direction of aggregate formation processes in soil.

3 ex

FIELD: measurement equipment.

SUBSTANCE: for sampling in order to analyse soil a place is identified, as well as frequency, duration of soil sampling on sites according to a coordinate grid, indicating their numbers and coordinates. At the same time in each node of the coordinate grid or its part a site of soil sampling is laid with symmetrical shape with rows of soil sampling arranged symmetrically relative to borders of this site.

EFFECT: correlation of plant sampling for species diversity and soil sampling on an investigated site according to entire coordinate grid.

4 cl, 8 dwg, 6 tbl, 1 ex

FIELD: agriculture, in particular, method used for determining of phosphorous fertilizer demands in the course of growing of cereals and leguminous crops.

SUBSTANCE: method involves providing annual agrochemical investigation of soil arable layer; determining labile phosphorus content and availability of phosphorus to plant for forming of planned yields by providing chemical analyses for capability of soil to mobilization of labile phosphorus by using potassium phosphate solution, as well as by calculating doses of used phosphorous fertilizer from respective formula, with annual agrochemical investigation being provided in arable layer at 0-20 cm depth; additionally determining content of labile phosphorus delivered into soil in the course of mineralization of soil organic substance and plant remains of preceding crop.

EFFECT: reduced labor consumption, increased precision in diagnosis and regulation of phosphorous feeding of plants.

2 cl, 1 dwg, 2 tbl, 1 ex

FIELD: agriculture, agronomic chemistry, agronomic ecology, soil biology, and chemical analysis of soil.

SUBSTANCE: method involves determining content of mineral nitrogen and potentially mineralizable nitrogen provided by soil incubation at temperature of 34-36°C for 7-8 days; converting mineral and potentially mineralizable soil nitrogen to solution by boiling incubated soil suspension in water in the ratio of 1:5 during 20 min for sandy, sandy loam and medium loamy soil and during 30 min for heavily loamy soil; subjecting aqueous extraction of soil sample to analysis by means of Kieldal apparatus for determining nitrogen content actually available to plants under light alkaline hydrolysis conditions; determining nitrogen content potentially available to plants under drastic alkaline hydrolysis conditions; forecasting fertilizer nitrogen dose on the basis of nitrogen content actually available to plants for predetermined yield of specific crop with the use of coefficient of assimilation by plants of soil nitrogen and fertilizers, and amount of nitrogen needed for production of 1 centner/hectare of product from formula: ,

where D is forecast fertilizer nitrogen dose; N is kg/hectare; Yc is crop yield for which fertilizer nitrogen dose is calculated, centner/hectare; C is amount of nitrogen needed for production of 1 centner/hectare of product of designed crop, kg/hectare; Naa is amount of nitrogen in soil actually available to plants, kg/hectare; 0.4 is coefficient of usage by plants of available nitrogen from fertilizer, %. Method may be used for evaluation of humic podzol soil with regard to its nitrogenous state, forecasting of need for nitrogenous fertilizer by plants, determining stock of nitrogen available to plants and forecasting of crop yields. Method does not require prolonged observations and controlling of soil temperature during plant growing periods.

EFFECT: increased efficiency, elimination of employment of expensive bulky equipment for performing forecasting process.

5 dwg, 4 tbl

FIELD: biochemistry.

SUBSTANCE: method comprises using microscopic chlorella algae as a biological test, distributing the suspension of the cells of chlorella over the paper filter on the surface of the soil plate in the Petri caps, obtaining chlorophyll extract, determining optical density of the extract, and comparing it with the reference one. The 20-ml volume of the suspension of the chlorella cells are distributed inside the Petri caps. The caps are covered and set into a greenhouse. The caps are exposed to light during seven days, and then the filters are removed from the caps, dried at a temperature of 38-42°С, grinded, and extracted. The allelopathy activity of the soil is expressed in per cents of the optical density of the extract on the reference one, in which chlorella is grown on the filter, which is set onto four layers of moistened filtering paper or cotton.

EFFECT: reduced labor consumptions and enhanced reliability of determining.

1 tbl

FIELD: agriculture, soil science.

SUBSTANCE: alteration in soil properties during restoring the carcass of organo-mineral gel should be detected by measuring the difference of potentials between the soil and soil-contacting ion-exchange membrane. The method considerably simplifies and accelerates evaluating the carcass of organo-mineral soil gel.

EFFECT: higher efficiency of evaluation.

2 cl, 1 ex, 1 tbl

FIELD: agrochemistry.

SUBSTANCE: method contains sampling soils and analysis of samples using X-ray-fluorescent technique. Content of humus is judged of from arsenic-to-cobalt ratio on preliminarily plotted calibration graph.

EFFECT: increased reliability and rapidity of analytical procedure.

1 dwg

FIELD: mining industry.

SUBSTANCE: method includes performing compression tests according to system "cylindrical hollow sample - backfill material" in rigid matrices with different values of relation of height of backfill material, filling space between walls of rigid cylindrical matrix and sample, to sample height, which has relation of height to diameter no less than 2. sample is set in matrices in such a way, that its axis passes through matrix axis. Unified hardness passport is built in coordinates "horizontal stress - vertical stress" of rock sample. Tests of rock samples for sliding are additionally performed during compression with loads above limit of lengthy hardness of rock with construction of sliding curves in coordinates "load level - vertical deformations speed logarithm", after that rock samples in matrix are enveloped in backfill material and same tests are performed again. Relative reaction of backfill massif is determined from mathematical expression. Alignment chart is built for dependence of relative reaction of backfill material from relation of its height to height of rock sample for various levels of system load. Alignment chart is used to determine relative reaction of backfill massif during its long interaction with rocks, enveloping a mine.

EFFECT: higher reliability, higher trustworthiness, higher quality of control over processes of deformation and destruction of massifs.

5 dwg, 1 ex

FIELD: agriculture, in particular, evaluation of soil capacity of supplying farm crops with mineral nitrogen under sloped relief conditions.

SUBSTANCE: method involves composting soil while adding ammonium sulfate; determining content of nitrates accumulated in soil after decomposition of organic compounds. Composting procedure is carried out under natural field temperature mode conditions in bottomless vessels and at optimal moisture content mode conditions by providing periodic off-season irrigation procedures. Nitrification capacity is evaluated by ammonium nitrogen-to-nitrate nitrogen transition intensity.

EFFECT: increased information content of nitrification capacity evaluating method and wider range of usage.

2 cl, 3 tbl

FIELD: agriculture, in particular, soil type determining method allowing soil fertility to be evaluated.

SUBSTANCE: method involves sampling soil; preparing and analyzing soil sample by fluororoentgenographic method for determining calcium, iron, zirconium and titanium content thereof; determining type of soil by iron to zirconium ratio and calcium to titanium ratio from preliminarily plotted gauging diagram.

EFFECT: quick process of determining soil type, intensified interpretation and provision for obtaining of reliable results.

1 dwg

FIELD: agriculture and soil science, in particular, determination of soil properties.

SUBSTANCE: method involves determining maximal shear stress, with said process being carried out with the use of soil solution squeezed from soil and located in glass vessel; spilling dispersed material into glass pipe; determining maximal shear stress by difference of gas pressure at different ends of pipe, with soil solution being moved.

EFFECT: reduced labor intensity owing to substantial decrease in amount of soil required for carrying out test.

1 ex

FIELD: agriculture and soil science, in particular, methods for determining of soil properties.

SUBSTANCE: method involves placing soil suspension into pycnometer; adding liquid and removing blocked air from soil by vacuum supplying. Liquid is solution tending to destruct soil aggregates. Air is removed from fluidized soil bed.

EFFECT: simplified process for determining density of soil solid phase and reduced probability of occurrence of error in test results.

1 ex

Up!