Method to mine steep beds by well hydraulic production with ancillary mining of methane

FIELD: mining.

SUBSTANCE: method includes mining of a coal bed by chambers in an ascending order by a hydraulic method from surface and using underground mines, drilling machines, hydraulic monitors, and also a hydraulic elevator. At first a well is drilled from surface to the bed at the side of the roof, where pipes are placed for the hydraulic monitor, hydraulic elevator and methane suction, afterwards coal excavation starts in a split slot. Then another well is drilled in the produced slot along the coal bed, where pipes are installed for the hydraulic monitor and methane suction. Besides, in process of coal excavation in a chamber along bed rise with usage of underground mines the coal pulp arrives to an accumulating drift, which replaces the hydraulic elevator. At the same time methane is also sucked along the pipes to the surface.

EFFECT: wider area of method application, higher safety of minerals mining.

4 dwg

 

The invention relates to the mining industry and can be used in the development of steep coal seams borehole gidrodobychnyh associated with the issuance of methane to the consumer, for example, when performing leave pillars of coal with a high gas content, the development of which for one reason or another cannot be produced by traditional methods.

There is a method of developing coal seam borehole gidrodobychnyh (RF Patent No. 2368783, AS 4500, Appl. 2006.01. The method of mining coal seam borehole gidrodobychnyh), where minerals are destroyed by high-pressure water jet, and the resulting pulp with methane using hydraulic ejector is given to the surface.

The disadvantage of this method is that it does not provide an effective testing of steep coal seams.

Closest to the invention to the technical essence and the achieved result adopted for the prototype is the way in which the excavation of the coal is out of the chambers on the dip. As of coal extraction and after drilling through the left hole in the rear of the goaf exercise exhaustion of methane (RF Patent No. 2415266, AS 4118, Appl. 14.12 2009. The method of coal extraction from the cells with associated methane production).

Along with the existing advantages of this method has drawbacks:

- a large amount of training is valid;

dangerous working conditions because of the potential for methane explosions.

The objective of the invention is to eliminate the above disadvantages of the prototype, and thus the creation of this method of coal extraction, which will allow for the integrated and sustainable use of coal in the bowels due to the expansion of the scope of the method, the safe development of natural resources.

The invention consists in that in the method of designing cool coal seam borehole gidrodobychnyh with associated methane production, including the development of a coal seam by the camera in ascending order hydraulically from the surface and underground workings, drilling machines, hydro, and hydraulic ejector, beginning from the surface of the drill hole on the reservoir side of the roof, which is placed in the pipe for jetting, hydraulic ejector and suction methane, and then begin to seize the coal in the cutting gap, then the gap are drilling another well on the coal seam, which set the pipe for jetting and suction methane, moreover, the extraction of coal in the chamber by the uprising of the reservoir using the underground workings of coal, the pulp goes on accumulating drift, replacement hydraulic ejector, simultaneously is the extraction of methane gas through pipes to the surface.

The way poyasnee the Xia drawings, which figure 1 is a diagram of the testing of steep seam borehole gidrodobychnyh associated with methane extraction; figure 2 - section a-a in figure 1; figure 3 - testing of underground reservoir in preparation; figure 4 is a cross-section B-B figure 3.

The way the development of steep coal seams borehole gidrodobychnyh with associated methane production is carried out as follows. First, from the surface side of the roof of the formation being drilled well 1, which are the pipes 2, 3, 4 nozzles for supplying water to the water cleaning unit 5 with a nozzle 6 and the hydraulic ejector 7 for dispensing slurry onto the surface 8. Above the well is mounted airtight chamber 9. The gaps 10 between the borehole wall and the cylindrical part of the chamber in concrete, as through the hole and sealed the chamber issued the methane pipeline 11 to the consumer. Then with the help of giant begin to seize the coal cutting slits 12.

Next, from the surface to split the slit 12 in the seam of coal 13 drilled a second well 14, in which is set a giant 15 with the nozzle 16. Above the well also mounted airtight chamber 17, the gap 18 which is also concrete.

Extraction of coal by water cleaning unit 16 is carried out by the rebellion of the reservoir 13 with the formation of the chamber 19 and mercanery pillar 20. Bouncing giant 15 coal with the water enters the split slit 12 further by means of hydraulic ejector 7 is given to the surface.

As excavation of the coal in the chamber 19 becoming pipelines is reduced and methane in the well 14 extends in a sealed chamber 17 and then to the consumer.

In underground coal preparation layer 13 instead of cutting slits 12 and hydraulic ejector 7 from Kerslake 21 is accumulating passage 22, in which the surface of the drilled bore 14 in which is mounted a giant 15 with the nozzle 16. Above the well also mounted airtight chamber 17, the gap 18 which is also concrete.

Bouncing giant 15 coal with water by gravity to the accumulating passage 22 and then also by gravity to verslag 21. At the same time through the borehole 14 is a suction methane.

After completion of dredging of coal in the chamber and exhaust methane all equipment is relocated for dredging of coal and extraction of methane from the other camera.

The way the development of steep coal seams borehole gidrodobychnyh with associated methane production, including the development of a coal seam by the camera in ascending order hydraulically from the surface and underground workings, drilling machines, hydro, and hydraulic ejector, wherein the first surface of the drill hole on the reservoir side of the roof, which is placed in the pipe for jetting, hydraulic ejector and suction methane, and then begin to produce vyamk the coal cutting slits, then in the gap are drilling another well on the coal seam, which set the pipe for jetting and suction methane, and mining the coal in the chamber by the uprising of the reservoir using the underground workings of coal, the pulp goes on accumulating drift, replacement hydraulic ejector, and simultaneously carry out the extraction of methane gas through pipes to the surface.



 

Same patents:

FIELD: machine building.

SUBSTANCE: method involves lifting of elements of underwater mineral deposits consisting of flow of transporting medium, transportation of hydraulic fluid in supply airlift pipeline, supply of compressed air to mixer of lifting pipeline, creation of multicomponent mixture after compressed air is supplied to hydraulic fluid mixture and transportation of multicomponent mixture flow in lifting airlift pipeline. At that, first, phantom cross section is chosen in the flow intended for transportation of elements of underwater mineral deposits, and for chosen phantom cross section there specified is the range of change of pressure value. Flows of water and air-and-water mixture are created in supply and lifting pipelines by supplying compressed air with the compressor to mixer of lifting pipeline Value of actual pressure is monitored in the chosen phantom cross section, as well as actual range of change of the monitored value is determined. Compliance of the certain actual range to the specified one is checked, and elements of underwater mineral deposits are supplied to water flow of supply airlift pipeline in case certain actual range belongs to the specified one.

EFFECT: increasing development efficiency of underwater mineral deposits at big marine depths due to shortening the total start-up time of airlift plant; avoiding the disturbance of transportation of solid material and gumming of pipelines during airlift start-up.

2 cl, 3 dwg

FIELD: mining.

SUBSTANCE: method to extract materials from thick underground formations is carried out by means of formation opening with a well, placement of a well hydraulic monitor unit in it, creation of a naturally balanced vault above a production chamber within the productive horizon and washout of formation rocks with pulp delivery to the surface. In order to increase efficiency of well hydraulic production of minerals, excessive pressure is pulled in the production chamber, which meets the following condition: Pchamb.≥Pform.+0.03 MPa, where: Pchamb. - pressure of working fluid in the production chamber, Pform. - formation pressure. At the same time the pressure in the chamber is continuously monitored with sensor installed in lower and upper parts of a movable pipe of the hydraulic monitor unit, and the excessive pressure in the production chamber is provided by control of the working fluid supply into the well, with high-quality of hydraulic insulation of the annular space with mortars based on bentonite powders with specific viscosity from 50 sec. until "non-liquid" state.

EFFECT: higher efficiency of well hydraulic production of minerals.

2 cl, 1 dwg

FIELD: mining.

SUBSTANCE: method involves mining activities performed during summer season by water jet by means of devices installed in underground cavities pre-drilled from surface of the well along longitudinal axes of pillars at certain distance from each other with pulp lifting to the surface and its supply via pulp line to flushing device in order to extract useful component and laying of dehydrated flushing remainders formed during washout process of sands so that distributed filling masses are formed. Pillar recovery is performed in two stages during two years. During the first year the pillars are recovered partially so that gaps are left between cavities washed out between them, which are developed using the same method in the next year; at that, in order to strengthen compression properties of filling masses, they are frozen with natural cold during winter period.

EFFECT: avoiding execution of underground mine workings at pillar extraction; possibility of selective development of technogenic deposit; arrangement of dehydrated flushing remainders in the worked out space and its complete use; avoiding cavings in the ground surface; recovery of rock mass continuity and stabilisation of its temperature mode; minimum contamination of environment; eliminating the necessity for execution of recreation works.

2 dwg

FIELD: mining.

SUBSTANCE: method of hydraulic borehole mining of mineral resources at inclined position of beds involves construction of hydraulic mining and auxiliary wells. Hydraulic mining and auxiliary wells are located in lines along the strike of inclined beds and cross them. Bottoms of vertical hydraulic mining wells are drilled downstream, and bottoms of auxiliary wells having vertical and inclined parts of well, the vertical part is drilled to similar inclined beds and the inclined bed enters similar productive formations, both from upper beds and within productive formations, and is directed towards hydraulic mining wells. Distance between location lines of hydraulic mining wells and auxiliary wells is determined with stability of inter-layer beds-bridges of the worked out area of loose ore beds, and distance between hydraulic mining wells and between auxiliary wells is determined with technical drilling capability of inclined branches towards hydraulic mining wells providing disintegration of loose ores between location lines of hydraulic mining and auxiliary wells of all similar beds subject to development and crossed with hydraulic mining and auxiliary wells.

EFFECT: increasing the scope of mining operations, controlling the mining volume of ore mass as to depth of hydraulic mining well, reducing the scope of construction work of hydraulic mining wells and operating equipment on mining per unit of time.

2 dwg, 2 ex

FIELD: mining.

SUBSTANCE: device includes pulp lifting pipe string with pulp removal head, which is installed inside casing string of the well, air supply pipe string with nozzle provided on its lower end, which is installed inside pulp lifting pipe string with possibility of vertical movement through the head, water supply pipe string installed inside air supply pipe string and having the outlet through side surface of suction tip. Steam supply pipe is installed in upper part of water supply pipe string; there is flange coupling on casing string and pulp lifting pipe string, which tightens those strings between each other; air supply device with two cocks and pressure gauge is installed on casing string below flange connection; inside pulp lifting pipe string there installed is additional water supply pipe string the lower end of which is located on the level of lower end of suction tip and level metre the upper end of which is passed through flange coupling and tightening device, and the jack connected to one of inner pipe strings is installed on the head cover.

EFFECT: improving development efficiency of underground reservoir in permafrost sedimentary rocks.

4 cl, 2 dwg

FIELD: mining.

SUBSTANCE: development method of underground reservoir in permafrost sedimentary rocks involves drilling of sand permafrost formation with a well, installation of process columns in it, supply of water, compressed air, heat carrier via them, development of working-out-capacity by thermal destruction of frozen rocks and air-lifting of developed hydraulic fluid of sand to the surface with water supply for weighing of deposit to the air-lift suction zone and additional water to working-out-capacity with control of water-air boundary level position by regulating the flow of supplied water. Well head is tightened and excess pressure is increased in underground reservoir by supplying compressed air to the well; during thermal destruction of frozen rocks there used as heat carrier is steam which is supplied with constant flow together with additional water; additional water flow is changed to control the water-air boundary level position, and recirculated water forming during separation of sand from lifted hydraulic fluid is supplied to weigh the deposit.

EFFECT: improving development efficiency of underground reservoir in permafrost sedimentary rocks.

1 dwg

FIELD: mining.

SUBSTANCE: method includes coal bed extraction in sub-levels with the use of hydraulic mining and pressure tight bulkheads. First, sublevel drifts are put to the boarder of mine section, then, as far as the coal is extracted in the sublevel entry way there installed is portable pressure tight bulkhead with pipe and duct for the output of coal slurry and concurrent methane exhaustion from near-well bore area. Note that after sublevel working out methane exhaustion is continued from the ducts installed in pressure tight bulkheads.

EFFECT: complex and rational use of coal in subsurface resources ensured by concurrent methane extraction, reduction of coal prime cost, safe mining.

4 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining, in particular mechanised face complexes for underground development of mineral deposited in sloping beds. Mechanised face complex for production of mineral deposited in sloping beds, its development in large blocks and delivery of these blocks by escalators, includes sections of powered support, hydraulic cutting cleaning machine with rolls, providing for its motion, to cut the mineral from bottomhole massif in large blocks with the possibility to cut transverse slots while hydraulic cutting machine is immovable, and to cut back vertical slot by means of continuous motion of hydraulic cutting machine with actuators and hydraulic cutting heads joined via metal tubes, on which they are rigidly fixed, with water supply manifold, outgoing from multipliers that impart ultrahigh pressure to water, hydraulic booster installed with the possibility of its continuous feeding with water and emulsion by means of continuously joined hoses of hydraulic cutting machine to water supply and emulsion manifolds, layer of manifolds for provision of possibility to re-arrange specified manifolds as hydraulic cutting machine moves and changes its direction of movement in process of idle run. Hydraulic cutting machine is arranged with the possibility to cut longitudinal slots parallel to plane of bed, simultaneously to cutting of back vertical slot with application of special hydraulic cutting untis, hydraulic booster is arranged with the possibility to feed water of ultrahigh pressure at actuators providing for cutting of back vertical and longitudinal slots as hydraulic cutting machine moves, and while hydraulic cutting machine is immovable - with the possibility to feed all water to actuators providing for transverse hydraulic cutting, besides lengths of all sections along length of long face of continuous cutting of transverse slots at one side and back vertical and longitudinal slots at the other side are identical. At the same time complex is equipped with suspended platform joined at goaf side of the second escalator to move long face of hydraulic cutting machine along it by means of electric drive connected to driving sprocket engages with track chain arranged in cute also laid in suspension platform, and body of track chain holds all communications providing for operation of hydraulic booster: emulsion discharge and drain manifolds, water manifold and electric cable.

EFFECT: increased efficiency of cleaning face, provision of high safety level, reduced release of gas and dust into atmosphere of long face.

4 cl, 10 dwg

FIELD: mining.

SUBSTANCE: invention refers to mineral resource industry, particularly to development of placers of minerals including alluvial placers of valuable minerals and noble metals including gold, silver, platinum etc. The procedure includes making vertical borehole and drilling boreholes into zone of gravel product deposits which are washed out with hydro-monitors. Produced pulp is directed to the vertical borehole. The vertical borehole is drilled facilitating entry into underground mine working constructed below the placers in a zone of stable rock. Directional upward boreholes are drilled into the zone of placers from the said mine workings. The vertical and directional upward boreholes are cased with a through filter pipe and filter strings; also hydro-monitors are installed in the filter strings of directional upward boreholes. Screw or helical hollow pipe is axially transferred and rotated for cleaning a filter part inside the through filter string of the vertical borehole and for control of pulp flow from the placer. Flush fluid coming via pointed perforation in screw or helical hollow pipe is supplied along whole length of the filter part of the through filter string.

EFFECT: maximal complete development of placer and continuous extraction of mineral.

1 dwg

FIELD: mining.

SUBSTANCE: high-pressure bit nozzle is made in the form of confuser with straight-line channel section. Nozzle diametre do is chosen depending on density of flushing fluid, supply of drilling pump, nozzle resistance coefficient, nozzle opening degree, flow coefficient of supply channels, flow coefficient of nozzle, number of nozzles in the bit, the pressure created with the drilling bit, and length of straight-line nozzle section is determined by the formula ℓ=Kd0, where ℓ - length of straight-line channel section; K - trial coefficient (K=0.51÷0.53). Wear resistance of the material of the working nozzle part is higher than wear resistance of the material of its rest part.

EFFECT: increasing the drilling efficiency and reducing the cost of the drilling process.

FIELD: mining industry.

SUBSTANCE: method includes opening productive bed by product slanting well, casing the well by pipes column, mounting well block with concentrically positioned pipes columns, lift and hydro-monitoring headpiece, hydro-monitoring erosion of bed and raising formed mixture of rocks by said lift to surface. According to method, opening of productive bed is performed using product slanting well and its casing is performed by displacing outer pipes column of well block along well axis and concurrent rotation of inner pipes column, hydro-monitoring headpiece is inserted inside outer column of pipes of well block, and during erosion of bed it is pulled out of outer pipes column of well block. Device for realization of said method is made in form of well block, including as common parts concentrically placed pipes column, outermost of which is casing column of well, and inner one is provided with headpiece with lift, hydro-monitoring headpiece and pressurizing element, and portal in form of two-passage swivel for feeding water and draining pulp. Pressurizing element is mounted at end piece above hydro-monitoring headpiece and is made in form of cylindrical shelf. To limit movement of inner pipes column relatively to outer pipes column, at lower end of outer pipes column a bushing is mounted with possible interaction with cylindrical shelf, outer diameter of which exceeds inner diameter of bushing.

EFFECT: higher efficiency, lower costs, lower laboriousness.

2 cl, 4 dwg

FIELD: mineral extraction method with the use of underground hydraulic ore cutting and extraction of crushed ore through boreholes.

SUBSTANCE: method involves cutting deposit over the deposit area into panels (sections or blocks); drilling boreholes for extracting pulp; arranging standpipe for pressure working medium supply and standpipe for conveyance medium supply; forming working excavation and filling thereof with stowing after development; performing lower deposit undercutting to provide ore massif permeability for working medium by serial shock blasting borehole and then camouflet explosive charges; forming camouflet cavities by blasting borehole charges and intermediate camouflets; performing successive impregnating of crushed massif with medium dissolving borehole minerals (for instance with acid or alkali solution); arranging containers with the dissolving medium above camouflet explosive charges before blasting thereof; separating them from explosive charges and from upper borehole part by stowing; supplying working medium through pressure working medium pipeline without creating overpressure in the medium; increasing pressure at outlet with hydraulic intensifier; regulating ratio between solid and liquid components of pulp risen by means of airlift plant by supplying compressed air through actuator arranged under pulp intake means.

EFFECT: increased fullness of mineral extraction.

3 cl, 6 dwg

FIELD: transport building, particularly to perform mining operations in far north areas.

SUBSTANCE: method involves cutting ground in pit and supplying sludge to concentration plant; separating the sludge into concentrated and lean sludge fractions in the concentrated plant; forming deposit vessel in water pool, filling the vessel with lean fraction, wherein the vessel is isolated from concentrated ground deposit by partition dam; developing concentrated ground with jet drag heads; forming and supplying strong pulp to washing in zone; washing in ground in layers, wherein upper layer consists of concentrated draining ground, or forming above ground structure by freezing the ground in layers in winter period. To implement above method water pool bottom is deepened to design level, one or several head parts of drag head are installed on deepened water pool bottom, the head parts are covered with concentrated ground and ground deposit is formed below ice boundary of water pool. Ground is extracted from above deposit from under ice through flexible sludge pipelines during extended working season.

EFFECT: reduced unit costs for strong sludge forming and elimination of costs necessary to maintain lane above underwater ground deposit during extended working season.

2 cl, 2 dwg

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with executive members of rotary device made in hydraulic monitor plant through hydraulic system. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted by means of wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Wash zone oscillators and sensors which record dynamic wash zone properties are installed on upper telescopic bar of T-shaped lever pivotally secured to additional rod of hydraulic monitor plant and brought into cooperation with drive through L-shaped link for lever rotation. Pre-disintegration zone oscillator and sensors which record dynamic properties of pre-disintegration zone are installed on telescopic rotary device hinged with airlift rod. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with rotary device of hydraulic monitor plant through hydraulic system, wherein vertical rod of hydraulic monitor plant is provided with rigid fixers brought into cooperation with slots of additional vertical rod. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted through transformers to wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Sensors which record dynamic wash zone properties and sensors which record dynamic properties of pre-disintegration zone are installed on the additional rod included in hydraulic monitor. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed prior transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: mining industry, particularly to produce loose, soft or single-grained minerals through production boreholes.

SUBSTANCE: method involves installing drilling rig in one point of area to be treated; drilling inclined production boreholes at an angle to horizon; installing pipes in the borehole; assembling hydraulic production equipment and lifting mineral to surface. Drilling rig is installed in one point to be treated so that the drilling rig may perform azimuth and angular rotation in vertical plane. Several production boreholes extending at different angles to horizon in common vertical plane are drilled by the drilling rig. The first borehole has minimal angle defined by maximal possible length of borehole, which can be drilled by the drilling rig. The next borehole has maximal angle defined by rock deformation area to prevent rock deformation on surface and in mineral production equipment installation area. Remainder boreholes are drilled in the same vertical plane at α3, α4, ... απ angles to horizon, which maximizes efficiency of mineral production. Similar inclined boreholes are drilled in other vertical planes by rotating the drilling rig in azimuth direction through γ1, γ2 ... γπ angles. Mineral is produced simultaneously or sequentially from borehole groups to provide smooth lowering of overlaying rock.

EFFECT: increased mineral removing fullness with the use of single equipment unit, reduced amount of construction-and-assembling operations, possibility to perform operations in any season, reduced costs of operation performing in cold season, increased safety for staff and equipment.

2 dwg, 2 ex

FIELD: mineral field development by hydraulic mining methods, as well as borehole drilling and all-purpose underground cavities creation.

SUBSTANCE: device comprises connection pipe for pressure water. Connection pipe of slurry pipeline has conical constricted section, wear-resistant insert made as spaced rings of wear-resistant material installed downstream from the conical constricted section in slurry flow direction, and conical widening section arranged downstream from the rings. Connection pipe of slurry pipeline has orifices made in area of ring location and adapted to supply pressure water into connection pipe of slurry pipeline via gaps defined between the rings. Hydraulic elevator is arranged at end of connection pipe for pressure water. Connection pipe for pressure water and hydraulic elevator may have water-jet nozzles. Gaps between rings of wear-resistant insert are created due to ring end roughness. As pressure water is supplied part of flow moving via annular gap passes through annular hydraulic elevator and enters into connection pipe of slurry pipeline to create ascending flow. Due to created vacuum washed mineral is sucked into connection pipe of slurry pipeline in slurry form and then transported to surface.

EFFECT: reduced wear of inlet connection pipe part.

3 cl, 1 dwg

Hydraulic monitor // 2272143

FIELD: methods of hydraulic mining, particularly hydraulic monitors for rock breakage with water jets.

SUBSTANCE: hydraulic monitor comprises base, hinge assembly and barrel with nozzle. Through pipe extending along barrel axis is installed in barrel channel and supported by centrators. The first pipe end is communicated with atmosphere, another one is located in the nozzle. Pipe-nozzle diameter ratio is 0.50-0.57. The pipe serves as ejection means. As high pressure water passes through the nozzle streamlined air bubble is created at pipe outlet due to air ejection. Air bubble pressure is less than atmospheric pressure. This provides jet compression at nozzle outlet and as a result increases jet range. Abrasive and chemical materials may be used with water jet to improve rock breakage efficiency.

EFFECT: increased efficiency.

1 dwg

FIELD: mining, particularly to develop gold-bearing rock with high clay content.

SUBSTANCE: method involves loosening rock by applying mechanical action to the rock along with periodically initiating elastic vibrations in ultrasonic-frequency band with constant frequency in clay-sand rock - water system, wherein the elastic vibrations are initiated under constant outer pressure and power for different time periods; determining optimal action application time to provide stable clay particle precipitation in clay-sand rock - water system having constant volume during previously choosing controllable particle dimension range; determining conditional transformation coefficients from mathematical expression; making plot of conditional transformation coefficient change as a function of time; determining increase of controllable initial specific surface of particles to be loosened and halving ultrasound power when controllable initial specific surface of particles to be loosened is increased by an order.

EFFECT: reduced specific power consumption.

6 dwg

FIELD: geotechnology, particularly bore mining in wide range of mining and geological conditions.

SUBSTANCE: method involves drilling bore extending for the full thickness of underground mineral formation; cutting the underground mineral formation in chamber coaxial to the bore with the use of water-jet devices. Before hydraulic formation cutting rock massif is moistened by supplying pressurized water in bore for a time period enough to expand moistened zone for necessary distance, wherein water pressure is less than pressure of hydraulic formation cutting. After formation moistening water-jet device is lowered in the bore to cut mineral in moistened zone adjoining the bore. After that formation moistening and cutting operations are repeated to create chamber having predetermined dimensions.

EFFECT: reduced power inputs for hydraulic rock cutting.

2 dwg

Up!