Method for laying of ceramic stone

FIELD: construction.

SUBSTANCE: method for laying of a ceramic stone includes a layerwise laying of stone onto a rolled heat insulation material, on both sides of which there is a composition applied, being coated with a protective film, capable of gluing the ceramic stone. Prior to laying the material is released from a protective film at one side, and is rolled onto the surface prepared for laying for the laying length, afterwards the other side of the material is released from the protective film, and a row of ceramic stone is laid on it.

EFFECT: reduced labour inputs for performance of laying, accelerated laying process, and also neutralised differences along height of finished items, reduction of cold bridges to zero.

1 ex, 1 tbl

 

The invention relates to the construction and can be used in various ways masonry (ROWLOCK, jointing etc.), mainly from ceramic stone in low-rise and high-rise construction. A known method of construction masonry (SU 1654489, publ. 1991). There is a method intended for direct sale on the site, include layer-by-layer stacking bricks on the strips are coated with the binder solution, the strips are used felted roll of tape material, which when laying on a layer of brick is subjected to a horizontal reciprocating motion into vertical joints of brickwork, and the application to it of the binder is carried out by pulling through a container with a solution. The horizontal reciprocating movement of the NAP roll of belt material into the vertical joints of brickwork complicate the process of laying. Felted material, which offers tend to swell waste weaving or Plastpolymer production, in the process of laying can change the thickness. This may lead to a difference in the compression and density of the pile material in the clutch, which then can lead to the destruction of the walls. When laying such a large ceramic products, ka is ceramic stones, the known method, characterized by changing the thickness of the material and the use of mortar as a binder, will give a too large height differences, which will provoke the creation of thermal bridges, negatively affecting the efficiency of constructed masonry.

The present invention is to create technologically advanced, energy efficient masonry ceramic stones. To solve this problem, a method for laying ceramic stone, including layer-by-layer stacking stone on a roll of insulating material, on either side of which is coated with a protective film of the adhesive composition capable of bonding ceramic stone, with, before laying the material released from the protective film on one side and on the length of the masonry roll prepared under the masonry surface, and then released from the protective film the other side of the material and laid on it a number of ceramic stone.

Used in the claimed method, the roll of insulation material coated on both sides of the adhesive composition, covered with a protective film, it is similar to the "double-sided tape, which can be manufactured as a finished material supplied in rolls to the construction site. The protective film is removed to the desired length and are exempt from it those who noisolation the material by bonding ability printed on both sides of the composition adhered to the surface of the stacked ceramic stone. In this case, the thickness of the insulating material constant. When the layout is not required to carry out reciprocating movements. The protective film can be easily removed manually released from the material by pressing the hand is attached to the masonry stones, it is clamped in length is made by rolling a smooth roller. Since the insulating material will get compression from the following layers of stones, variations in the height of the masonry will be leveled. In addition, the use of insulating material will allow to neglect heat losses that will occur at the points of intersection of the stones. A new technical result achieved by the claimed invention is to reduce labor costs for maintenance of masonry, reducing the thickness of the masonry and to accelerate its process, and also to neutralize changes in height of finished products, the mixing of cold bridges to zero.

Example. Rolled insulation material used for implementing the inventive method, is applied on both sides of the adhesive composition, capable of stick ceramic stone. As the insulating material used felt from basalt fiber thickness up to 5 mm Can be used mineral wool, felt, mineral plate and other materials. Felt from both sides of the impregnated adhesive stamps Paato may be another adhesive composition on acetate or acrylic base, able to glue ceramic stone. Before laying, prepared under the masonry surface such as a concrete Foundation, concrete or polystyrene formwork, masonry mortar, etc., unroll the insulation roll material, the underside of which pre-remove protective film. After rolling out remove the top protective film and released from the film material in accordance with the scheme of masonry stack a number of ceramic stones. Operation is repeated in the same numbers as necessary. To implement the side seams of the clutch coil insulation material is cut into pieces of desired size, which are released from the protective film, glued to the side surfaces of the stacked ceramic stones.

In relation to classical laying stones on the adhesive mastic and mortar the inventive method can guarantee the consistency of mortar joints, because the existing difference of up to 5 mm in height finished products will be leveled by insulating material, receiving the compression from the following layers of stones. The use of insulating material will allow to neglect heat losses that will occur in the mortar joints, so you will not need ceramic brick.

The inventive method can be IP is alsoan in the manufacture of panels of ceramic stones, for which, as for example in technology "REDBLOCK" (http://www.smt-perm.com/cms/front_content.php?idcat=110), ceramic stones are polished, cut to the desired angle and in terms of production workshops are glued with special glue with further building panels, which are mounted on a building site on a standard project. When using a patented method, the grinding is not necessary because, as mentioned above, variations of up to 5 mm in height finished products will be leveled by insulating material that will get compression from the following layers of stones. Ceramic bricks are also not required, since the use of insulating material allows to neglect heat losses that will occur at the points of intersection of the stones. The table shows the results of comparative tests of thermal conductivity of the fragments of masonry cement-sand mortar and the claimed method of large stones NF 10,7 fill basalt fiber and glass. Tests were carried out according to GOST 530-2007, p. Test data demonstrate the high efficiency of masonry using double-sided tape. thermal conductivity of masonry is reduced by 77% when using blocks filled with mineral wool and 87% when using blocks filled with foam glass. Received R the results indicate a decline in the intensity of the heat transfer process, allow buildings with a smaller thickness of the walls.

The inventive method enables the construction of buildings on any project, regardless of the proposed manufacturer of ceramic panels, as well as the possibility of use as a building envelope for multi-storey buildings up to 10 floors.

Table
№ p/pName sampleThermal conductivity W/(m·ºC)
1Fragment laying on a cement-sandy solution of large-size ceramic blocks with void filling basalt fiber 73.5%0,110
2Fragment laying on a cement-sandy solution of large-size ceramic blocks with void filling a glass 73.5%0,150
3A fragment of masonry on "two-sided tape from ceramic stones with large void filling basalt fiber 73.5%0,085
4A fragment of masonry "doctor nnem the tape from ceramic stones with large void filling a glass 73.5% 0,130

The method of laying ceramic stone, including layer-by-layer stacking stone on a roll of insulating material, on either side of which is coated with a protective film of the adhesive composition capable of bonding ceramic stone, with, before laying the material released from the protective film on one side and on the length of the masonry roll prepared under the masonry surface, and then released from the protective film the other side of the material and laid on it a number of ceramic stone.



 

Same patents:

FIELD: mechanics.

SUBSTANCE: reinforcement rod fixation device contains a body having a throughhole for the reinforcement rod insertion and embedded parts for installation between the reinforcement rod as inserted into the throughhole and the peripheral inner surface of the body. The peripheral inner surface of the body is shaped as a funnel. Each embedded element has hitching section on its peripheral inner surface coming in a fastening contact with the reinforcement rod and a conic surface formed on at least part of its peripheral outer surface that comes in surfacial contact with the body peripheral inner surface. The hitching section contains a section with female screw thread formed on the peripheral inner surface of the embedded elements designed so that to enable screwing onto the male screw thread section formed on the outer surface of the reinforcement rod. The body contains an insert section having a basically cylindrical shape and a flange section whose outer diametre exceeds that of the insert section. The flange section on the body outer periphery has a couple of flat sections positioned parallel to each other on opposite sides of the body throughhole central axis.

EFFECT: reinforcement rod fixture device can easily be fixed in a position relatively remote from the reinforcement rod end section; it ensures enhanced strength of cohesion to the reinforcement rod.

2 cl, 14 dwg

FIELD: construction.

SUBSTANCE: erection of multi-layered walls is started from laying of protective layer of external walls on ready foundations with simultaneous concreting of columns which are located inside external walls. After external walls and solid columns are erected, there concreted are reinforced-concrete belts along the whole perimeter of building. Casing of columns is made from material of protective layer of external walls and reinforced with "П"-shaped grids through four laying rows. Specific feature of method is that erection of walls of the first floor is performed while construction of walls of ground floor is not finished yet. Besides reinforcement is led out from foundation to be connected to reinforcement of columns. When laying the protective layer, it is reinforced through four rows of laying with grid reinforcement.

EFFECT: reducing the construction period, possibility of construction at any period of the year, providing maximum comfort at reducing construction material consumption.

3 cl, 6 dwg

FIELD: building.

SUBSTANCE: invention refers to building, particularly to structures of construction hollow ceramic brick-blocks widely applied at work of homogenous external walls of buildings with specified thermal resistance in various climatic conditions of their operation. There is disclosed the hollow-porous ceramic brick-block for construction of homogenous walls; the brick-block consists of side running and head facets and of an internal structural thermo-insulating structure formed with lengthwise and cross sides and with several rows of through cells situated parallel to running facets; the said cells consist of main slit-like cells arranged with set-off relative to each other in neighbour rows at half of their length and of additional through cells arranged on opposite sides of these rows and separated from each other with partitions along the row length. The brick-block is made out of clay with additives up to 10% of volume; additives correspond to burned-out fine-crumbled charcoal or sifted peat or sawdust and up to 20% of charcoal or TES (thermo-electric stations) cinder. The structural heat-insulating structure is straightened relative to running and head facets at 45° and is divided along length into two equal parts with a ceramic partitions running across running and parallel to head facets. Each part is made out of rows of square main cells separated from one another with ceramic partitions crossing at the angle of 90°. Each square main and additional cell is also separated by depth into two cells with the ceramic partitions set-off relative to partitions of adjacent cells. Internal walls and planes of two parallel pair of facets crossing at 90° are divided with partitions, forming triangle additional cells along internal perimetre of each part in each row; length of hypotenuse of each triangle additional side is equal to diagonal of square of the main cell. All cells are oriented relative to running and head facets of the brick-block so, that diagonals of square cells and hypotenuses of additional cells are arranged across heat flow both from the side of running and head facets, while in the adjacent rows these cells are set off relative to each other at half of their diagonal and they alternate in the following way: one row contains only three main square cells, another row contains two square cells and two additional cells on ends. Three more additional cells are located on the head internal facet and on the wall dividing partitions; while one running head includes two square recesses. Also here is disclosed the work procedure for homogeneous walls out of hollow-porous ceramic brick-block.

EFFECT: upgraded physic-technical indices both of brick-block and work procedure for construction of wall of building due to implementation of available, ecologically safe and reliable homogeneous material; also expanded range of application of hollow-porous ceramic brick-block in building for construction of homogeneous walls of buildings.

6 cl, 12 dwg

FIELD: construction.

SUBSTANCE: inventions are related to the field of construction and may be used in enterprises making construction materials, and also in individual and industrial construction in erection of walls and foundations, and also in arrangement of dams, coffer dams, fortification structures, etc., especially in emergency conditions. Package for packing of dry construction mixes, comprising shell and insert. Shell is made as moisture-proof, and insert - as moisture-permeable, at the same time insert is made with the possibility to take shape of rectangular parallelepiped when filled, ribs of which are preliminarily marked, and one of insert facets has a marking modular grid. Also construction element is described, as well as method for application of construction materials.

EFFECT: improved efficiency of construction due to expansion of functional and technological resources of flexible construction elements.

4 cl, 8 dwg

Method of masonry // 2346117

FIELD: construction.

SUBSTANCE: invention is related to the field of construction, namely to methods of walls erection. Method of masonry that stipulates for binding of construction element adjacent sides by masonry mortar and thus shaping lower horizontal row of wall, further formation of other above-located horizontal rows of wall with bonding by means of construction element adjacent facets binding by masonry mortar from the ones laid in every horizontal row located below, and from other construction elements that form the new horizontal row, with the possibility to form heat accumulating hollows between facets of construction elements of neighboring rows. Besides after formation of every horizontal row of wall, at first rows of strings are placed on this row on top along its length, parallel to erected wall, and masonry mortar is applied in strips above every row of strings, thus forming longitudinal channels parallel to wall on surfaces of horizontal rows from construction elements between rows of strings, and the channels form chambers of heat accumulating cavities inside the wall during masonry mortar hardening between joined surfaces of neighboring horizontal rows of construction elements.

EFFECT: provision of heat-shielding properties of erected wall and masonry manufacturability, reduction of erected wall thickness and lower consumption of masonry mortar.

4 cl, 1 tbl, 6 dwg

FIELD: construction.

SUBSTANCE: invention pertains to the sphere of construction and may be employed in brick work of walls of small cellular-concrete blocks performed on thin layer mortar (adhesive mixture) with 1-3 mm seam thickness. Brickwork of walls of small cellular-concrete blocks is made on thin layer mortar (adhesive mixture) with seam thickness of 1-3 mm. Brickwork includes also reinforcing rods set in the slots. Slots are arranged in the blocks in the level of horizontal seams of the brickwork and are filled in with concrete or mortar. Reinforcing rods press glass-net to the bottom of the slots. Glass-net is set in the thin layer mortar and covers the entire horizontal surface of the brickwork seams.

EFFECT: increased bearing capacity of the brickwork of the walls of small cellular-concrete blocks.

1 dwg

FIELD: construction.

SUBSTANCE: external wall of cottage that contains protective layer from fine-sized blocks, medium layer of aerated concrete and internal layer of sheet materials joined to protective layer. It is provided with monolithic reinforced concrete frame arranged in the form of columns row inside the wall on building foundation, which are connected to each other with monolithic reinforced concrete belt along building perimeter in the form of flat plates that embrace columns and have reinforcing projections passing through column reinforcing carcass, and having cavities of diamond and triangle shape filled with thermal inserts from heat insulating material, at that width of plates is equal to the total thickness of the wall.

EFFECT: increase of strength, provision of possibility to erect buildings directly in construction site, reduction of costs with simultaneous provision of strength and convenience.

4 cl, 10 dwg

FIELD: construction.

SUBSTANCE: invention is related to low-rise and cottage construction with application of multi-layer construction blocks that meet the highest requirements to decorative outside lining of buildings, heat and sound insulation of premises, for instance, prefabricated residential buildings, cottages and other structures. Building wall assembled from set of different construction blocks that consists of row, angular and intermediate blocks that are installed in rows, joined to each other in a certain manner and fixed between each other. Every block consists of decorative layer, bearing layer and heat insulating layer provided in between, which are fixed to each other with polymer rods. Angular blocks are provided of two types, at that the first type is arranged with L-shaped location of decorative and heat insulating layers that project with their one end to the side facet of the block, and with its other end - to the back facet of the block, at that bearing layer is made as shortened with one end that projects to side facet of the block, and the other end that joins to short shelf of heat insulating layer, and length of front layer of angular block short shelf is selected as equal to block thickness. The second type of angular unit is arranged with L-shaped location of bearing and heat insulating layers that project with their one end to the side facet of the block, and with its other end - to the front facet of the block, at that decorative layer is shortened with one end that projects to the side facet of the block, and the other end that joins to the short shelf of heat insulating layer, and length of bearing layer of the angular block short shelf is selected as equal to the block thickness. Intermediate blocks are installed in the zone of window and door openings of the wall and are provided of three types, at that the first type of intermediate blocks is arranged with stepped side facet formed with projecting decorative layer, and side link that connects bearing and decorative layers perpendicular to them in stepped side facet, and the second type of intermediate blocks is arranged as shortened in length that is multiple to half of block length from the side of its front facet, and the third type of intermediate blocks is arranged with stepped side facets that are formed by projecting decorative layer, and side links that connect bearing and decorative layers perpendicular to them on both stepped side facets. Method is also described for erection of building wall.

EFFECT: simplification of construction blocks design in set and technology of wall erection with observance of all required technical and technological parameters, optimisation of number of blocks in set, increase of masonry strength characteristics and reduction of construction cost.

2 cl, 9 dwg

FIELD: construction, particularly building elements of block or other shape for the construction of building walls having necessary thermal resistance for different usage environment.

SUBSTANCE: building member is shaped as rectangular parallelepiped provided with slots made in building member faces. Each building member face surface has relief projections forming parallel ridges with slots to be filled with mortar. Each ridge is joined with other ridges formed on surfaces of adjacent faces along ridge edges so that united ridge is created around building member perimeter. The united ridge has longitudinal section parallel to one vertical face. Each face surface has at least two parallel ridges spaced equal distances from face edges. Wall erection method is also disclosed.

EFFECT: provision of uniform strength, improved manufacturability, increased heat-shielding properties of wall to be erected along with increased technological efficiency of the masonry, decreased wall thickness and decreased mortar usage.

6 cl, 1 tbl, 10 dwg

FIELD: FIELD: construction, particularly to erect building and building structure walls of separate block rows.

SUBSTANCE: wall panel consists of blocks laid in rows and reinforcement. Each block comprises longitudinal sides and X-shaped partitions, which define cavities filled with structural and heat-insulation materials. The panel is constituted of vertical tier block rows, wherein at least two block rows located one adjacent another in horizontal plane are provided with at least one reinforcement bar in longitudinal direction and with anchors in transversal direction. Reinforcement bars and anchors are secured in cavities of adjacent blocks forming tier rows, wherein the cavities are filled with structural material.

EFFECT: increased heat insulation quality, output and assemblage capacity, decreased construction time and enhanced conditions of work.

1 cl, 2 dwg

FIELD: construction, particularly outer load-bearing walling structures of buildings and building structures.

SUBSTANCE: building wall formed of small building members comprises outer and inner layers and metal inserts. The wall additionally has vertical stiffening diaphragm plates. Metal inserts have Z-shaped cross-sections and are periodically spaced along wall plane. Flanges of the inserts are arranged in inner and outer wall layers correspondingly so that vertical middle face works in shear and folded flanges located on masonry plate work in crush. Metal inserts unite inner and outer wall layers along stiffening diaphragm plates in single structure.

EFFECT: increased wall maintainability and reliability of cooperation between masonry members.

2 cl, 15 dwg

Building system // 2263747

FIELD: building unit production.

SUBSTANCE: building system comprises building units with fixing members made as extensions and depressions. Building units are formed as sectors arranged in horizontal plane and forming a circle. The sectors may be added in length in vertical direction. Centers of fixing members are located on concentric circle and spaced equal distances one from another. Some sectors facing circle centre form cylindrical cavity for fastening rod receiving during system lengthening.

EFFECT: simplified building unit transportation, reduced material consumption, increased convenience of system installation in confined area.

4 cl, 3 dwg

FIELD: building, particularly composite and cast-in-place building erection, for outer load-bearing structure heat insulation due to elimination of cold penetration through joints of reinforced concrete floor structure with load-bearing walls and/or columns.

SUBSTANCE: envelope wall structure includes end surfaces of load-bearing members arranged between cast-in-place reinforced concrete floor panels and blocks fastened one to another with concrete and arranged between floor panels. The structure also has heat insulation. The blocks project outwards with respect to end surfaces of load-bearing members for a distance of not less than 1/6 of block width. The heat insulation is arranged in depressions. Depression walls are defined in vertical direction by end projected surfaces of blocks and load-bearing members and in horizontal direction by lower and upper projected surfaces of blocks and end surfaces of reinforced concrete floor panels.

EFFECT: simplified structure and reduced costs of wall envelope structure, increased thermal properties and elimination of cold joints between floor structure and load-bearing walls.

3 cl, 3 dwg

Wall panel // 2296197

FIELD: construction, particularly to erect building and building structure walls of separate hollow blocks.

SUBSTANCE: wall panel consists of blocks laid in rows and reinforcement. Each block comprises longitudinal sides and X-shaped partitions, which define cavities filled with structural material in staggered order. Blocks are connected with each other in horizontal plane with at least one reinforcement frame having reinforcement bars connected with each other by means of structural material in crossing points thereof.

EFFECT: increased wall panel quality, improved labor productivity, decreased construction time and enhanced conditions of work.

1 cl, 2 dwg

FIELD: FIELD: construction, particularly to erect building and building structure walls of separate block rows.

SUBSTANCE: wall panel consists of blocks laid in rows and reinforcement. Each block comprises longitudinal sides and X-shaped partitions, which define cavities filled with structural and heat-insulation materials. The panel is constituted of vertical tier block rows, wherein at least two block rows located one adjacent another in horizontal plane are provided with at least one reinforcement bar in longitudinal direction and with anchors in transversal direction. Reinforcement bars and anchors are secured in cavities of adjacent blocks forming tier rows, wherein the cavities are filled with structural material.

EFFECT: increased heat insulation quality, output and assemblage capacity, decreased construction time and enhanced conditions of work.

1 cl, 2 dwg

FIELD: construction, particularly building elements of block or other shape for the construction of building walls having necessary thermal resistance for different usage environment.

SUBSTANCE: building member is shaped as rectangular parallelepiped provided with slots made in building member faces. Each building member face surface has relief projections forming parallel ridges with slots to be filled with mortar. Each ridge is joined with other ridges formed on surfaces of adjacent faces along ridge edges so that united ridge is created around building member perimeter. The united ridge has longitudinal section parallel to one vertical face. Each face surface has at least two parallel ridges spaced equal distances from face edges. Wall erection method is also disclosed.

EFFECT: provision of uniform strength, improved manufacturability, increased heat-shielding properties of wall to be erected along with increased technological efficiency of the masonry, decreased wall thickness and decreased mortar usage.

6 cl, 1 tbl, 10 dwg

FIELD: construction.

SUBSTANCE: invention is related to low-rise and cottage construction with application of multi-layer construction blocks that meet the highest requirements to decorative outside lining of buildings, heat and sound insulation of premises, for instance, prefabricated residential buildings, cottages and other structures. Building wall assembled from set of different construction blocks that consists of row, angular and intermediate blocks that are installed in rows, joined to each other in a certain manner and fixed between each other. Every block consists of decorative layer, bearing layer and heat insulating layer provided in between, which are fixed to each other with polymer rods. Angular blocks are provided of two types, at that the first type is arranged with L-shaped location of decorative and heat insulating layers that project with their one end to the side facet of the block, and with its other end - to the back facet of the block, at that bearing layer is made as shortened with one end that projects to side facet of the block, and the other end that joins to short shelf of heat insulating layer, and length of front layer of angular block short shelf is selected as equal to block thickness. The second type of angular unit is arranged with L-shaped location of bearing and heat insulating layers that project with their one end to the side facet of the block, and with its other end - to the front facet of the block, at that decorative layer is shortened with one end that projects to the side facet of the block, and the other end that joins to the short shelf of heat insulating layer, and length of bearing layer of the angular block short shelf is selected as equal to the block thickness. Intermediate blocks are installed in the zone of window and door openings of the wall and are provided of three types, at that the first type of intermediate blocks is arranged with stepped side facet formed with projecting decorative layer, and side link that connects bearing and decorative layers perpendicular to them in stepped side facet, and the second type of intermediate blocks is arranged as shortened in length that is multiple to half of block length from the side of its front facet, and the third type of intermediate blocks is arranged with stepped side facets that are formed by projecting decorative layer, and side links that connect bearing and decorative layers perpendicular to them on both stepped side facets. Method is also described for erection of building wall.

EFFECT: simplification of construction blocks design in set and technology of wall erection with observance of all required technical and technological parameters, optimisation of number of blocks in set, increase of masonry strength characteristics and reduction of construction cost.

2 cl, 9 dwg

FIELD: construction.

SUBSTANCE: external wall of cottage that contains protective layer from fine-sized blocks, medium layer of aerated concrete and internal layer of sheet materials joined to protective layer. It is provided with monolithic reinforced concrete frame arranged in the form of columns row inside the wall on building foundation, which are connected to each other with monolithic reinforced concrete belt along building perimeter in the form of flat plates that embrace columns and have reinforcing projections passing through column reinforcing carcass, and having cavities of diamond and triangle shape filled with thermal inserts from heat insulating material, at that width of plates is equal to the total thickness of the wall.

EFFECT: increase of strength, provision of possibility to erect buildings directly in construction site, reduction of costs with simultaneous provision of strength and convenience.

4 cl, 10 dwg

FIELD: construction.

SUBSTANCE: invention pertains to the sphere of construction and may be employed in brick work of walls of small cellular-concrete blocks performed on thin layer mortar (adhesive mixture) with 1-3 mm seam thickness. Brickwork of walls of small cellular-concrete blocks is made on thin layer mortar (adhesive mixture) with seam thickness of 1-3 mm. Brickwork includes also reinforcing rods set in the slots. Slots are arranged in the blocks in the level of horizontal seams of the brickwork and are filled in with concrete or mortar. Reinforcing rods press glass-net to the bottom of the slots. Glass-net is set in the thin layer mortar and covers the entire horizontal surface of the brickwork seams.

EFFECT: increased bearing capacity of the brickwork of the walls of small cellular-concrete blocks.

1 dwg

Method of masonry // 2346117

FIELD: construction.

SUBSTANCE: invention is related to the field of construction, namely to methods of walls erection. Method of masonry that stipulates for binding of construction element adjacent sides by masonry mortar and thus shaping lower horizontal row of wall, further formation of other above-located horizontal rows of wall with bonding by means of construction element adjacent facets binding by masonry mortar from the ones laid in every horizontal row located below, and from other construction elements that form the new horizontal row, with the possibility to form heat accumulating hollows between facets of construction elements of neighboring rows. Besides after formation of every horizontal row of wall, at first rows of strings are placed on this row on top along its length, parallel to erected wall, and masonry mortar is applied in strips above every row of strings, thus forming longitudinal channels parallel to wall on surfaces of horizontal rows from construction elements between rows of strings, and the channels form chambers of heat accumulating cavities inside the wall during masonry mortar hardening between joined surfaces of neighboring horizontal rows of construction elements.

EFFECT: provision of heat-shielding properties of erected wall and masonry manufacturability, reduction of erected wall thickness and lower consumption of masonry mortar.

4 cl, 1 tbl, 6 dwg

Up!