Foundation and method of its arrangement

FIELD: construction.

SUBSTANCE: foundation includes boards arranged on a levelling sand preparatory base, having limiters under a foot. Boards have through slots along edges, and limiters are arranged in the form of flat plates, as capable of their insertion into through slots.

EFFECT: increased rated resistance of base soil, increased bearing capacity and reduced subsidence of a structure.

3 cl, 3 dwg

 

The invention relates to the field of construction and can be used in cases when it is necessary to reduce the unevenness of the sediment structures in the construction of complex engineering-geological conditions.

Known to the Foundation, made in the form of a flat rectangular plate, located on the ground [1].

However, this Foundation has drawbacks: low load-carrying capacity with a relatively large amount of material, the difficulty of eliminating the growth of non-uniform sediment.

Also known Foundation with constraints in the form of triangular tabs on the edges of the soles, which implements the method of reducing stress-strain state of soil due to the use of triangular protrusions on the edges of the soles of [2].

The disadvantage of this Foundation is that immutable height limiters in the form of tabs is not possible to regulate the growth of non-uniform sediment due to the fact that the tabs are made with base plate as a single unit.

To eliminate these disadvantages it is necessary to adjust the depth of the tabs under the Foundation, depending on the geological conditions of the construction site.

There is a method of installation of foundations, including installation on leveling sand preparation of the plates and the Assembly of the Foundation blocks implemented in the know is the Foundation [1].

There is a method of installation of foundations has the disadvantage that it is not possible to adjust the stress-strain state of soil.

There is also known a method of installation of foundations, implemented in the closest to the technical nature of the Foundation, including installation on leveling sand training plates with limiters, allowing to partially reduce stress-strain state of soil for a specific environment [2].

However, the known method does not allow to regulate the stress-strain state of soil for any conditions that may be applied prefabricated Foundation.

The problem is solved in that in the known Foundation that includes located on leveling the sand preparation plate, which has the sole limiters, the plates have end-to-end slits along the edges, and limiters in the form of flat plates, with the possibility of introducing them through the slits.

The task in terms of the way the Foundation is solved in that in the known method of the device of the Foundation, including installation on leveling sand training plates with limiters, in the event of sediment S>10 cm restrictions in the slots of the base and submerge them to a predetermined depth in the ground, and then fix them.

Another difference of the situation of the t is that cuts imposed constraints, and then are removed, and the resulting imprint enter a pinning structure.

Find more similar technical solutions in scientific-technical and other literature showed that the proposed set of essential features is unknown, therefore, the claimed technical solution has novelty. The solution does not follow the current level of technology, so it has an inventive step. Testing ideas in the laboratory showed that the proposed solution may have industrial application.

The claimed technical solution is illustrated by drawings, where: figure 1 is a view of the basement from above; figure 2 - a section of the basement along section 1-1 dened limiters; 3 - section Foundation along section 1-1 when using a fixing composition.

The Foundation consists of a plate 1, slot 2, flat limiters 3, limiters made of a fixing solution of 4, sand preparation 5 and primer 6.

As the fixing solution can be used, for example, sodium silicate or cement mortar.

The Foundation is organized as follows. On prepared soil base is mounted concrete ribbon of the plates 1 and 2 slots. Make installation of basement walls. Crush in the city of the CNTs flat limiters, made of plated items. Fix them and produce backfill sinuses of the pit. When using the fixing solution is injected fixing solution by the injectors into the ground with sufficient permeability. In the construction of this Foundation on clay soils in slot pre alternately injected flat limiters, take them, and educated prints impose a pinning structure.

The Foundation works in the following way.

As the load increases on the basis in regional areas under the sole shallow foundations arise zone of plastic deformations, which upon further increase in load result in large quantities of sediment and loss of bearing capacity of Foundation. The total sediment structure consists of two components: sediment, which can occur when there is lateral displacement of the particles; the precipitate resulting from lateral displacement of the particles.

Found that the greater the ratio of lateral expansion of the soil and less than the size of the soles of the Foundation, the greater the impact of sediment lateral displacement of particles.

The proposed Foundation compared with the prototype allows to increase the depth of the clamping zones of plastic deformation and the size of the soil core, which increases the calculated resistance the Foundation soil, to increase bearing capacity and reduce precipitation structures. In addition, a strip Foundation has a relatively small cross section, so applying Foundation of this design will be more efficient.

Sources of information

1. Foundations, basements and underground structures / M.I. Gorbunov-Posada, VA Il, Krutov V.I. and others; Under the General editorship of E.A. Corocana and YG Trofimenkoff. - M.: stroiizdat, 1985. - 480 S. - (Handbook of the designer).

2. AS the USSR №1294916, IPC E02D 27/00, "Foundation", BI No. 9, 1987

1. The Foundation, which includes located on leveling the sand preparation plate, which has the sole limiters, characterized in that the plates have end-to-end slits along the edges, and limiters in the form of flat plates, with the possibility of introducing them through the slits.

2. The method of the Foundation, including installation on leveling sand training plates with limiters, characterized in that when there is sediment S>10 cm restrictions in the slots of the base and submerge them to a predetermined depth in the ground, and then fix them.

3. The method of the Foundation according to claim 2, characterized in that the slits impose the constraints, and then are removed, and the resulting imprint is injected fixing composition.



 

Same patents:

FIELD: construction.

SUBSTANCE: prestressed shallow foundation formed by a foundation slab, a ground base and a support board installed under the foundation slab and under the ground base at the optimal depth. On the foundation slab there are jacks arranged, which are connected with traction rods and with ground anchors, inserted into the support board and stressed with a total force, which is equal to or is slightly higher than the weight of the erected structure. Anchor traction rods are arranged with tubular section to supply mortar during arrangement of a support board.

EFFECT: invention provides for minimisation of ground base deformation and for elimination of bases and foundations of nearly located buildings and structures, reduction of material intensity and labour intensiveness in construction of foundations.

2 cl, 1 dwg

FIELD: construction.

SUBSTANCE: method to erect a foundation on heaving soils includes installation of a foundation slab and heat insulation material onto a levelled base. A sliding layer is laid on the prepared base, and a multi-layer spatial foundation platform, comprising heat insulation material, is erected in a monolithic manner. The lower reinforced concrete slab is formed with vertical reinforcement rods protruding into crossing ribs along the entire height of the platform. Heat insulation material is laid onto the lower reinforced concrete slab with the possibility to arrange a system of crossing ribs. Crossing ribs are formed. An intermediate reinforced concrete slab is formed, the second layer of heat insulation material is set on it. Cross ribs are formed, and the upper reinforced concrete slab is formed, besides, the vertical reinforcement rods are connected to reinforcement of all slab layers.

EFFECT: reduced labour costs, provision of heat insulation material durability against potential damage, higher spatial stiffness of the foundation slab and its distributing capacity, provision of protection against frost swelling.

3 cl, 1 dwg

FIELD: construction.

SUBSTANCE: heat-insulation foundation comprises wall, foot, insulator of wall, additional insulator of foundation connected to insulators of foot and blind area. Lower edge of foundation insulator is below the level of freezing of soil, and external moistureproof gasket is arranged at the edge of blind area insulator. Additional moistureproof gasket is also located under foot, connected to external moistureproof gasket, and fill is provided between foundation insulator and external moistureproof gasket.

EFFECT: improved operational properties of heat insulation foundation, simplified design, saving of energy resources.

3 cl, 2 dwg

Foundation // 2393297

FIELD: construction.

SUBSTANCE: foundation comprises artificial bed with curvilinear surface, bearing elements and shell arranged on bed. Bearing elements are arranged in the form of radial and circular tapes for shells with positive Gauss curvature or transverse and longitudinal tapes for shells with zero Gauss curvature, forming meshy shell and laid through gaskets made of two layers of material, which slide relative to each other, onto concrete surface formed on curvilinear surface of artificial bed arranged in pit and inverted upwards with its convexity. Radial or transverse tapes are fixed by their edges to support contour in the form of support ring or a system of cross beams, which is deepened into natural bed, and gasket of elastic material is located between concrete of shell and support contour.

EFFECT: reduced settling of foundation, lower material intensity, provision of efficient and reliable protection of above-foundation structure.

3 dwg

Foundation // 2385994

FIELD: construction.

SUBSTANCE: foundation comprises support part, vertical stiffening ribs installed in it, which form square metal frame, under-column part arranged on vertical stiffening ribs - metal frame and equipped with elements of column structure connection. Support part is equipped with lower and upper reinforcement grids, and stiffening ribs are arranged in the form of at least three beams coming out of a single centre located on vertical axis of foundation, are arranged in the form of bent profiles and equipped with stiffening elements. Stiffening ribs are installed between lower and upper reinforcement grids, and elements of column structure connection to support part are arranged in the form of reinforcement leads.

EFFECT: reduced metal intensity and increased bearing capacity of foundation, simplified design.

2 cl, 4 dwg

FIELD: construction.

SUBSTANCE: monolithic foundation for column erected on natural or manmade basement, for instance rammed in the form of truncated cone, comprises support part with metal frame and under-column part installed on metal frame and equipped with elements of column structure connection. Support part is equipped with lower and upper reinforcement grids, and metal frame is made in the form of rigid inserts, which are symmetrically arranged versus vertical axis of foundation and are installed between lower and upper reinforcement grids. Elements of column structure connection to support part are arranged in the form of reinforcement leads.

EFFECT: simplified design, reduced metal intensity and increased bearing capacity of foundation erected under column.

3 cl, 4 dwg

Foundation // 2380484

FIELD: construction industry.

SUBSTANCE: foundation includes natural base with curved surface, load-carrying members and cover located on base. Load-carrying members are made in the form of orthogonal bands forming a meshed cover and laid on system of blocks installed on natural curved base located in ditch and the bulge of which is directed upwards; at that, ends of bands are attached to support outline made in the form of two-way beam system, which is embedded in natural base.

EFFECT: effective and reliable protection of the construction above foundation, reducing material consumption.

2 dwg

FIELD: construction.

SUBSTANCE: method for erection of foundation slab of framed structure includes foundation preparation, arrangement of curb onto prepared foundation, installation of reinforcing grid, its fixation, concreting. Foundation is prepared by filling of gravel layer and a layer of sand over it and laying of hydraulic insulation, for instance PVC film, afterwards lower part of foundation slab of framed structure is shaped by installation of enclosing curb made of concrete, for instance onto hydraulic insulation, arrangement of reinforcing grid limited by enclosing curb along perimetre, fixation of reinforcing grid, for instance by means of welding, transverse and longitudinal axial marking of reinforcing grid into squares, for instance 2.0×2.0 m, in angles of which, perpendicularly to reinforcing grid, reinforcement is installed and fixed, for instance, by means of welding, with length equal to design thickness of foundation slab of framed structure. Concreting of reinforcing grid down to required thickness, with further installation of multiuse curb blocks onto concreted surface in centre of marked squares in number sufficient to fill three first rows perpendicularly to longitudinal axis of foundation slab of framed structure, concreting is performed in two stages, at the first stage space is concreted between enclosing curb, the first and partially second rows of blocks, afterwards concrete should mature to state, when its surface still is adhesive enough for connection with the following portion of concrete to form monolithic structure. At the second stage remaining part of the second and partially third rows of multiuse curb blocks is concreted, after hardness is achieved that excludes concrete breakage, when multiuse curb blocks are withdrawn. The first row of blocks is withdrawn and installed in the fourth row, concreting is continued till final formation of framed structure area. Cells, which are not filled with concrete, produced by blocks of multiuse curb, are closed with reinforced concrete covers, and upper part of foundation slab of framed structure is arranged by laying of reinforcing grid onto produced surface limited along perimetre by enclosing curb, fixation of reinforcing grid, its connection, by means of welding, with outlets of reinforcement of lower part of foundation slab of framed structure and concreting down to required thickness.

EFFECT: reduced material intensity and labour intensity, improved strength and reliability of design.

3 dwg

Basement // 2367743

FIELD: construction.

SUBSTANCE: invention concerns construction, particularly building basements for industrial and civil facilities. Basement includes external shell widening in bottom part and holding filler material of varying material durability grade. Filler material of varying durability is laid in layers in horizontal and vertical directions.

EFFECT: reduced material cost of basement, enhanced reliability.

2 dwg

FIELD: construction.

SUBSTANCE: invention is related to construction, namely to erection of buildings and structures on freezing heaving soils. Foundation on freezing soil includes rigid body comprising foot and wall, with gasket from the side of foot inverted to soil and made of heat insulation material, for instance from foam polystyrene, and also additional heat insulation material installed outside foundation limits. Upper edge of additional heat insulation material is pulled from the side of foundation external edge in the form of broken inserts via rigid body of foundation and is connected to additional heat insulator of opposite external edge of foundation. Pressure on soil in foundation foot is accepted as not higher than value of design resistance of heat insulation material to compression, and relative area of broken inserts (β=Abr ins/A0) is defined from ratio β≤1-σmax/R, where Abr.ins is area of broken inserts section, m2, A0 is gross area of foundation section in place of inserts installation, m2, σmax is maximum tension in foundation material from external loads, MPa, R is design resistance of foundation material, MPa. Additional heat insulation material installed on external side of foundation foot is connected to heat insulation material of foundation external wall. Additional heat insulation material installed on internal side of foundation foot is connected to heat insulation material of foundation internal wall. Inserts of additional heat insulation material of foundation are connected to ceiling heat insulation material above foundation. Heat insulation material installed from external side of foundation wall is connected to heat insulation material of blind area. Heat insulation material installed on internal side of foundation wall is connected to heat insulation material of ceiling above foundation.

EFFECT: provision of possibility to install foundation above design depth of heaving soil freezing, increased level of soil protection under foundation against freezing.

2 dwg

FIELD: construction, particularly new building erection and existent building reconstruction under any engineering-geological circumstances.

SUBSTANCE: foundation structure comprises shallow foundation and reinforcement members. Reinforcement members are made as vertical bars of precast or cast-in-place piles having diameters less than 200 mm and arranged along foundation perimeter. The piles are spaced a distance from outer foundation faces. The distance is equal to 0.1-0.5 of reinforcement member diameter. Distance between neighboring piles is equal to 2-4 reinforcement member diameters and reinforcement member length is 15-20 diameters thereof.

EFFECT: increased load-bearing capacity due to creating compressive operational conditions under different engineering-geological circumstances, increased dynamic rigidity of foundation base and reduced foundation deformation and vibrational amplitude.

9 dwg

FIELD: building, particularly panel foundations for multistory buildings and structures, which apply non-uniform loads to ground base.

SUBSTANCE: method involves forming crossing slots in ground; reinforcing the slots with frames and concreting the slots. For panel foundation erection in clay ground pit is preliminarily dug in ground. Then crossing slots adapted for reinforcing frames receiving are created in pit ground, wherein the reinforcing frames have projected parts. Areas of reinforcing frames intersection are additionally reinforced along with connecting projected parts and concreting thereof to fill the slots.

EFFECT: increased operational effectiveness and reduced costs.

2 dwg

FIELD: building, particularly to erect bored cast-in-place foundations of increased load-bearing abilities including ones having bottom marks typical to shallow foundations.

SUBSTANCE: stepped foundation comprises bored cast-in-place sections formed with the use of auger. Lower foundation step includes four peripheral cylinders of Dp.l. diameters and heights equal to above diameters. Peripheral cylinder centers are located at apexes of square having side lengths equal to Dp.l.. Square center coincides with center of support. Central support abutting four peripheral cylinders of lower foundation step has four expanded parts with Dc.exp diameters determined as Dc.exp=(1.0-1.2)Dp.l. and cylindrical bore having diameter Dp.up determined as Dp.up=(0.6-0.8)Dp.l.. Foundation bottom is 0.7 m below ground surface. Foundation erection method involves forming drilled pile sections; serially drilling wells having daug.1 diameters as each peripheral cylinder having Dp.l. is forming; creating each peripheral cylinder having height equal to Dp.l. by supplying working material for above cylinder forming; filling remainder well section with ground material, particularly with ground excavated from above object. Auger having diameter, which provides necessary Dp.l. diameter is used. The auger provides usage of technological processes, which provides 1.05-1.1 increase of pile diameter in comparison with auger diameter daug.1 and 1.1-1.2 increase of ground pile diameter in comparison with daug.1 diameter. After four peripheral cylinders of lower foundation step creation well having daug.2 diameter is drilled by means of direct auger rotation and ground excavation to day surface. The well has center coinciding with central support center and depth selected so that the well reach tops pf peripheral lower step cylinders. Then lower expanded part of central support is formed, wherein the expanded part has expansion degree Bc.exp./daug.2 equal to 1.5-2.0. During cylindrical bore drilling the expanded part has expansion degree Dp.up/daug.2 equal to 1.2-1.5.

EFFECT: increased load-bearing capacity per foundation volume unit, extended field of technical means.

3 cl, 4 dwg

FIELD: construction, particularly to erect foundations in natural base.

SUBSTANCE: method involves driving pair of members pivotally connected with each other and provided with single bevels at lower ends thereof in ground; digging-out trench; installing guiding member on trench bottom; forcing plate members in ground up to plate members abutting upon guiding member and closing of beveled upper ends thereof; installing the similar pair of members having lengths exceeding that of the first pair in trench; driving above pair in ground up to upper beveled ends closing; concreting the trench.

EFFECT: increased load-bearing capacity of the foundation due to inclined members embedding and ground compaction under foundation bottom.

4 dwg

FIELD: construction, particularly to erect multistory buildings on non-uniformly compressible clay base.

SUBSTANCE: method involves excavating crossing trenches in ground; filling the trenches with concrete and joining thereof with slab covering the trenches. Trenches are excavated from pit bottom for different depths. Lower trench parts are provided with widened abutment sections having reinforcement bars included therein. The reinforcement bars are used as non-stretched threads. Trenches and slab are reinforced with nettings. Cell centers of the slab are anchored.

EFFECT: increased rigidity of foundation slab due to provision of ribs in ground.

5 dwg

FIELD: construction, particularly to erect foundations on natural bases.

SUBSTANCE: shallow foundation comprises support mats and foundation building blocks. Support mats have through orifices along mat perimeters. Upper parts thereof have extensions shaped as truncated cones and adapted to immerse piles in ground as load increases during structure overbuilding.

EFFECT: increased load-bearing ability.

2 dwg

FIELD: construction, particularly to reconstruct buildings and building structures.

SUBSTANCE: foundation comprises supports, sheath freely formed in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Cement mix layer, metal arch trusses and reinforced concrete layer are serially arranged on ground inside area defined by foundation. Metal sheets are laid on arch trusses and connected with each other through welded joints to create flexible sheath. Pre-stressed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath. In the second embodiment foundation comprises support, sheath freely arranged in ground inside area defined by foundation so that convexity thereof faces upwards and connected to supports by means of flexible ties. Ground mix layer reinforced with cement mix, metal sheets and reinforced concrete layer are serially located on ground inside area defined by foundation. Metal sheets are bent along predetermined profile and connected with each other to create sheath. Relaxed flexible ties inserted in through support orifices and provided with fixing anchors are placed over the sheath.

EFFECT: increased operational reliability.

4 cl, 1 dwg, 1 ex

FIELD: construction, surface mounted structures.

SUBSTANCE: invention pertains to construction and can be used when erecting buildings with considerable loading on a compressed clay bed. The technique for erecting a solid core foundation slab with closed vertical walls, directed downwards, involves designing a foundation pit, trenches, reinforcing them with frames and filling with concrete, and joining the surface with a slab. The trenches are dug from the bottom of the foundation with different depths. The trenches are then joined, thereby forming several closed contours, whose depth increases from the central part of the slab to the edges. The technical outcome is increase in strength of the foundation slab due to effect of the square shaped closed edges in the ground.

EFFECT: increased strength of the foundation slab.

3 dwg

FIELD: constructional engineering.

SUBSTANCE: invention refers to constructions on heaving soils. House footing based on freezing through soils includes a rigid body with flanges and indents from soil side, footing indent inserts made of heat-insulating material, e.g. polystyrene foam at such ratio of flange and footing indent areas that soil pressure from the lower flange surface is not less than standard pressure of frost soil heaving, soil pressure from the lower insert surface is not exceeding design compression resistance of insert material. Also, the said footing contains supplementary heat insulation laid outside of the footing. The upper edge of supplementary heat insulation is passed from external edge of the footing in the form of interrupted inserts through rigid body of the footing and connected to supplementary heat insulation of opposite external edge of the footing. Relative area of interrupted inserts (β=Aint.ins./A0) is given by the relation β≤1-σmax/R, where Aint.ins. is sectional area of interrupted inserts, m2, A0 is gross sectional area of the footing within inserts arrangement regions, m2, σmax is maximum external load pressure in footing material, MPa, R is design resistance of footing material, MPa. Indents and flanges of the footing from soil side are alternating along footing length. Indents centres from soil sides are provided under interrupted inserts centres of supplementary heat insulation from each external edge of the footing.

EFFECT: possibility to lay foundation above the design depth of heaving soil frost penetration level.

4 dwg, 1 tbl

Basement structure // 2334050

FIELD: building.

SUBSTANCE: invention refers to construction of the basements of buildings. The basement structure of a building includes heat - and waterproofing layer (17, 18, 40) which is laid on a flat horizontal surface (51) layer of the material breaking capillary action. The basement structure includes a frame (31) which surrounds specified heat - and waterproofing layer (17, 18, 40), at least, in its top part, thus fixing integrity of basement structure in a horizontal plane and which serves for punctiform bracing of the building supported by basement structure. The specified basement structure is encapsulated with foil (111) from a metal material.

EFFECT: prevention of smell penetration in a building and water-proofing maintenance; possibility of fast and energy conserving erection of the basement.

8 cl, 8 dwg

Up!