Method of extracting gold from mineral stock bearing minor gold fractions

FIELD: metallurgy.

SUBSTANCE: invention relates to mineral stock processing and may be used for extracting gold fractions of grain size smaller than 0.07 mm. Proposed method comprises preparing water suspension with addition of flocculating agent. Damped ground paper bulk is added to said suspension, paper bulk features reduced moisture resistance and mineral component-to-bulk ratio making 1: 0.05. Then, mix is mixed in mixer for 10 s. After mixing, paper bulk is separated on sieve with mesh size not exceeding 0.2 mm. Now, paper bulk is rinsed to produce concentrate to be dried and fused.

EFFECT: higher efficiency, lower costs.

1 ex

 

The invention relates to the beneficiation of mineral raw materials and can be used to retrieve small fractions of gold particle size less than 0,07 mm

The method for extracting gold, based on the change of the surface-active properties of the gold particles of hydrocarbon compounds. The hydrophobic surface of the gold particles covered with an oil film. Such olefinic particles glomerida into larger clusters, which are extracted by flotation or classification. The agglomerated product is subjected to firing, and the resulting burning ash melting [1].

The disadvantage of this method is a multi-stage extraction process, the need for processing agglomerates firing.

The method for extracting lyophilic mineral particles of gold, platinum, diamonds by mixing the ore slurry with oil and charcoal particles. Then the obtained product is subjected to pyrolysis or burn out from it coal and oil. Proposed process the pulp after adsorption reagent, solvent oil for the destruction of the formed agglomerates, and then separate the dispersed mixture of carbon particles and other components according to the specific weight [2].

The disadvantage of this method is a multi-stage extraction process, the necessity of the destruction of agglomerates by roasting or use of organic is their solvents.

The closest to the technical nature of the proposed solution is a method of separation of finely dispersed metals from mineral products, which consists in the fact that the extraction of gold lead through preparation of an aqueous suspension of gold-bearing material, treatment with iodine in an amount up to 300 g/t, at pH 8-11 obtaining phase containing the enlarged metal and separating it from suspensions [3].

The disadvantages of the method include the relatively high consumption of expensive reagent is iodine.

The technical result is to increase the efficiency of extraction of gold and reducing the cost of chemical treatment.

The technical result is achieved in that in the method of gold recovery from mineral raw materials, including the preparation of an aqueous suspension with the addition of flocculant solution, add the crushed wet pulp with low resistance in the ratio of mineral content to the paper pulp as 1:0,05, followed by stirring the mixture in the mixing device within 10 seconds, the Department of paper pulp on a sieve mesh size of not more than 0.2 mm, washing paper pulp, drying the obtained concentrate with subsequent melting.

The combination of significant new features allows you to solve a new technical problem - improving the efficiency of izvlecheny the gold and reducing the cost of chemical treatment.

The implementation of the method is as follows.

Example 1

Ten grams of the sample magnetic concentrate containing gold 365 g/t, with the size of the gold particles less than 0.07 mm, were placed in a container and filled with 150 ml of water and 2 ml of 0.1%solution of flocculant. Added crushed wet paper pulp with low resistance in the ratio of mineral content to the paper pulp as 1:0,05. Were stirring the mixture in the mixing device within 10 seconds, the Department of paper pulp on a sieve mesh size of not more than 0.2 mm, washing paper pulp, drying the obtained concentrate and subsequent melting. Gold recovery averaged 75-83%.

Example 2

Ten grams of the sample is non-magnetic concentrate Tourstage deposits containing gold 400 g/t, with the size of the gold particles less than 0.07 mm, treated with compliance operations as in the first experiment. Gold recovery averaged from 73 to 82%.

The method allows to increase the extraction and environmental security of the process of extracting fine particles of gold from the concentrate.

Sources of information

1. A new process for the extraction of gold Mining Magazin. 1990. 163. No. 1. C.62-63.

2. Patent No. 600606, Australia. Removing the lyophilic mineral particles of gold, platinum, diamonds 16.08.90.

3. Patent RU 2130499. Selection is fine is yellow, 20.05.99.

Method of gold recovery from mineral raw materials, including the preparation of an aqueous suspension with the addition of flocculant solution, characterized in that the suspension is added to the crushed wet pulp with low resistance in the ratio of mineral content to the paper pulp as 1:0,05, followed by stirring the mixture in the mixing device within 10 seconds, hold office paper pulp on a sieve mesh size of not more than 0.2 mm, washing paper pulp with getting concentrate and drying the obtained concentrate with subsequent melting.



 

Same patents:

FIELD: process engineering.

SUBSTANCE: invention relates to processing natural uranium chemical concentrate. Proposed method comprises concentrate leaching by nitric acid solution to obtain suspension, adding coagulant into suspension and suspension separation. Clarified solution is separated from residue and directed to extraction. Note here that polyacrylamide-based anion coagulant is used and suspension with said coagulant is subjected to permanent magnetic field effects. Coagulant concentration and duration of magnetic field effects are selected to ensure concentration of insoluble residue now exceeding 100 mg/l in clarified solution. In extraction from clarified solution, no antifloating emulsions are observed.

EFFECT: solution suitable for further extraction.

3 cl, 2 tbl

FIELD: chemistry.

SUBSTANCE: method involves transfer of manganese and accompanying impurities into a solution through two-step treatment of the starting material with hydrochloric acid and absorption of chlorine with an alkaline solution. Further, impurities are separated to obtain a manganese salt solution which is then treated. The first step uses waste hydrochloric acid with concentration 1-10% with solid to liquid ratio equal to 1:(3-5). A manganese-containing residue is separated from the obtained pulp, where said residue is then treated at the second step with waste inhibited hydrochloric acid with concentration 20-24% and content of inhibitor of not less than 5 wt %, reaction with iron of which results in insoluble complex compounds, where said inhibitor is in form of quaternary ammonium salts, with molar ratio manganese:HCl=1.0:1.1. The insoluble residue of aluminosilicates is then separated and the manganese salt solution is then processed using existing methods.

EFFECT: obtaining high-quality products.

5 cl, 2 tbl, 2 ex

FIELD: metallurgy.

SUBSTANCE: procedure for extraction of nickel from solutions and purification from impurities: Cr3+, Fe3+, Al3+, Cu2+, Zn2+, Co2+, Fe2+, Mn2+, Ca2+, Mg2+ consists in bringing pH of solutions to values 4.0-6.5, in sorption of nickel at pH=4.0-6.5 from solutions or pulps on sub-acid cationites, in desorption of nickel from saturated cationites with solution of sulphuric or hydrochloric acid with production of solution of nickel strippant. Before desorption saturated cationite is treated with solution of nickel purified from impurities, also with portion of solution of strippant with concentration of nickel higher, than its concentration in source solution or pulp coming to sorption at a value of pH less, than pH of solution or pulp in the process of sorption. Ratio of CNI:ΣCimpurity in solution of strippant changes from 7:1 to 500:1.

EFFECT: more deep purification of solution of nickel strippant from impurities.

4 tbl

FIELD: chemistry.

SUBSTANCE: invention relates to a novel method of removing copper (II) ions from water in the presence of ammonia, which is based on using a floatation reagent in form of β-N-oxyethylhydrazides of aliphatic carboxylic acids of formula (I), where R is a straight-chain radical containing 7-14 carbon atoms.

EFFECT: method ensures high recovery ratio (up to 99,0%) of copper (II) from ammonia media in a single step with relatively low reagent consumption.

2 cl, 2 tbl, 10 ex, 2 dwg

FIELD: process engineering.

SUBSTANCE: invention relates to method of producing iridium from (trifluorophosphine) iridium hydride tetrakis and may be used for production of high-purity metal iridium powder. Proposed method comprises ammonolysis of volatile complex compound of (trifluorophosphine) iridium hydride tetrakis Hlr(PF3)4 with conversion into nonvolatile iridium metallamine by water solution of ammonium. Then, iridium metallamine is dissolved in concentrated hydrogen nitrate and solution is evaporated. Evaporation over, residue is decomposed to sponge-structure metal iridium. Now, the latter is triturated, reduced in hydrogen flow and purified to high-purity iridium.

EFFECT: high-purity iridium powder.

1 ex

FIELD: metallurgy.

SUBSTANCE: procedure for purification of zinc sulphate solution from impurities consists in hydrolytic purification with preliminary iron oxidisation in two stages: first with diluted solution of hydrogen peroxide at temperature 20-55°C and consumption 0.95-1.1 of stoichiometric required amount, then with manganese dioxide contained in electrolytic slime of zinc production.

EFFECT: complete or partial avoiding expenditures for costly oxidant - manganese ore and reduced contents of foreign impurities in zinc sulphate solution.

2 ex

FIELD: metallurgy.

SUBSTANCE: invention relates to metallurgy of noble metals, in particular, to method of processing nitration hydroxides in refinery of platinum metals containing chalcogenides, tin, arsenium and platinum group metals, gold and silver. Proposed method comprises leaching of hydroxides and extracting basic metal compounds from the solution. Hydroxide leaching is carried out for 1-2 h by alkali solution with concentration of 140-180 g/l with l:S ratio varying from 3:1 to 4:1, temperature 80-90°C, and introducing hydrazine hydrate into pulp to reach OVP of minus 400-600 mV relative to reference silver-chloride electrode. Then, alkaline solution is separated from insoluble residue that concentrates platinum metals. Now, extraction of basic metals is carried out in processing alkaline solution by sulfuric acid to pH=4-5 to produce hydroxide precipitate of tin, arsenium, selenium and tellurium, and by filtration, or processing of alkaline solution by sulfuric acid to pH 0.5-1.0 along with adding iron powder to OVP varying from 0 to minus 100 mV, and filtration of obtained cementates obtained on the basis of selenium and tellurium, and processing the solution by alkali to pH = 4-5 with deposition of tin and arsenium hydroxides. Invention allows extracting up to 85% of Se and Te into target products, 90% of Sn and As into secondary hydroxides at minimum transition (less than 1%) into PMH.

EFFECT: over 99% of platinum metals left in refinery cycle, reduced processing cycle.

4 tbl

FIELD: metallurgy.

SUBSTANCE: procedure consists in concentrating refractory ore with successive concentrate fine crumbling to release gold with extracting solution and in mixing fine crumbled concentrate with wastes or by-products of concentrating to facilitate filtering said concentrate mixed with said wastes of concentrating. Here is also disclosed the installation for implementation of the said procedure.

EFFECT: increased rate of processing of refractory mineral ore avoiding harmful effect to environment.

14 cl, 4 dwg, 1 ex

FIELD: chemistry.

SUBSTANCE: electrosorption carbon material is the cathode and is carbon fibric on which there is a layer a conducting polymer - poly-3,4-ethylenedioxythiophene or polyaniline which can chemically reduce ions of noble metals Ag, Au and Pd to metal state. Before passing the aqueous solution to the electrosorption carbon material, a negative potential between -0.5 and -0.3 V is applied relative a silver chloride electrode. Reduction takes place upon contact of the electrosorption carbon material with the aqueous solution in flow mode while feeding the solution at a rate of 10-20 ml per minute per square centimetre of the electrosorption carbon material. Concentration of the extracted metal in the solution is measured and the reduction process is repeated many times.

EFFECT: invention increases efficiency of extracting noble metals, shortens duration of the process of their separation and simplifies and lowers the cost of the extraction process.

4 cl, 3 ex, 1 dwg

FIELD: chemistry.

SUBSTANCE: invention relates to chemical engineering of inorganic substances and can be used in cases when there is need to produce a nickel concentrate. The method of processing oxidised nickel ore involves mixing the ore with ammonium chloride, heating the obtained mixture and water leaching to obtain a solution. The ammonium chloride is mixed with the material in ratio of 100-150 mol % of the stoichiometric quantity. The mixture is then heated to temperature 200-315°C and kept at that temperature until release of ammonia, water and hydrogen chloride stops. After water leaching, ammonia water is used to precipitate iron and aluminium at pH 6, nickel and cobalt at pH 8-8.5 and manganese, magnesium and calcium at pH above 8.5.

EFFECT: design of industrial processing oxidised nickel ore to obtain a nicke-cobalt concentrate.

1 dwg, 2 ex

FIELD: metallurgy.

SUBSTANCE: method involves sintering of catalyst, leaching of sinter and deposition of aluminium at the first stage and molybdenum at the second stage from the solution. Catalyst is mixed with soda solution at solid-to-liquid ratio of 1:0.8÷1 prior to sintering. Soda consumption is taken based on 200-400 kg/t of raw material. The obtained sinter is subject to water leaching during 1-2 hours at temperature of 50-80°C. At that, molybdenum is deposited in the form of calcium molybdate at the second stage.

EFFECT: increasing molybdenum extraction efficiency.

3 cl, 1 ex

FIELD: metallurgy.

SUBSTANCE: method is carried out in two stages - melting and further reduction of a slag melt, sending the slag melt from the melting stage to the reduction stage is carried out in a direction opposite to motion of gaseous and dusty products, gaseous products of the melting and reduction stage are burnt above the melt of the reduction stage. The amount of oxygen in a wind supplied into the melt at the melting stage makes 0.9-1.2 from the theoretically required one to oxidise fuel carbohydrates to CO2 and H2O, amount of oxygen in a wind supplied for afterburning of gases above the slag melt of the melting stage makes 0.9-1.2 from the one theoretically required to oxidise components of effluent gases to CO2 and H2O, amount of the oxygen-containing wind supplied into the melt at the melting stage makes 500-1500 m3/m3 of the slag melt, the amount of the oxygen-containing wind supplied to the melt at the reduction stage makes 300-1000 m3/m3 of the slag melt. A furnace by Vanyukov is disclosed, in which a gas flue for joint removal of gases of melting and reducing chambers is installed in the end of the melting chamber dome at the distance of the reducing chamber above tuyeres of the upper row of the melting chamber along the vertical line in gauges of the lower row tuyere relative to the plane of the lower row tuyeres, the melting chamber bottom is arranged by 5-30 gauges below, the horizontal plane of upper row tuyere installation is by 30-80 tuyeres higher, the horizontal plane of lower row tuyeres installation in the reducing chamber is arranged below the upper edge of the vertical partition between the melting and reducing chambers by 40-85 gauges of the reducing chamber tuyeres.

EFFECT: lower mechanical dust carryover and toxic substances exhaust with effluent gases, reduced power and capital expenses, higher reliability, safety and operation life of melting and gas-cleaning equipment.

14 cl, 3 dwg

FIELD: metallurgy.

SUBSTANCE: method includes main floatation with several rewashes by sulphydric and apolar collectors to produce a collective crude copper-molybdenum concentrate. Then its treatment with a reagent is carried out, such as sodium sulphide, and selective floatation to produce a foamed molybdenum-containing product and a chamber copper-containing concentrate. When processing a crude copper-molybdenum concentrate, a combination of sodium sulfide and sodium thioantimonate at the ratio of 4:1÷1:1.

EFFECT: higher extraction of copper and molybdenum.

1 tbl

FIELD: metallurgy.

SUBSTANCE: proposed method consists in leaching of valuable and/or toxic components. Prior to leaching, sintering of mineral stock is executed by cement, calcium oxide and solution produced by mixing active soda solution subjected to photoelectrochemical treatment with leaching reagents. After sintering, pile is made from sintered material. Leaching consists in sprinkling said pile by water or aforesaid active soda solution.

EFFECT: higher efficiency.

1 ex

FIELD: metallurgy.

SUBSTANCE: method of processing of phospho-gypsum involves processing with an aqueous solution containing alkali metal carbonate, heating followed by separation of calcium carbonates and strontium. Before treatment phospho-gypsum is bioleached using bacterial complexes consists of several kinds of acidophilic thion bacteria in an active growth phase and adapted to phospho-gypsum. Bioleaching is carried out in a vat mode when a ratio of S:L = 1:5-1:9, temperature is 15-45°C and aeration is for 3-30 days with transfer of rare earth elements and phosphorus to the liquid phase. The resulting cake is treated with an aqueous solution containing potassium carbonate as an alkali metal carbonate.

EFFECT: simplified technology of disposal of phospho-gypsum with a complete extraction of valuable components and cost-effectively.

3 cl, 2 ex

FIELD: metallurgy.

SUBSTANCE: method for extracting metals from depulped ores involves crushing, ore depulping in leached solution and sorption of metal. Leaching is performed in ultrasound pulp cavitation mode. Metal sorption on ion-exchange resin is performed from pulp filtration solution in intensity field of alternating current in sorption activation mode of extracted metal and suppression of sorption of impurities. At that, polarity of electrodes is constantly changed to avoid deposition of metal on cathode. Leaching and sorption of metal is performed in a unit providing solution circulation till the specified completeness of leaching from ore and its complete sorption on ion-exchange resin is achieved.

EFFECT: improving metal extraction intensity.

2 cl, 1 dwg

FIELD: metallurgy.

SUBSTANCE: method involves distillation of the oil fraction in an inert gas atmosphere, milling and reducing roasting of the mineral residue by petcoke. Then milling and sulphatisation of titanium cinder are performed with oleum and leaching of titanium-containing compounds with water.

EFFECT: increased chemical reactivity of the concentrate, elevated levels of anosovite phase in the concentrate, increasing increase cost-effectiveness activity of the process through utilisation of the oil fraction and absence of additional consumption of a reducing agent during roasting, reducing of environmental hazard due to decrease in temperature of recovery roasting and sulphatisation.

4 cl, 2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: invention relates to a method of treatment of copper electrolysis slime floatation concentrate containing precious metals. The method includes leaching and precious metal extraction. Prior to leaching, sintering of floatation concentrate is done in a saline mixture of NaNO3 and NaOH at a ratio 3: 2 at 350-370°C during an hour. The product produced by sintering is subjected to leaching conducted by water at a ratio S:L-1:3 resulting in metal fraction production. The latter is directed to extraction of precious metals through refining and pulp containing a salt fraction and a solution. The pulp is subjected to filtering, wherein the solution is used rot tellurium and selenium extraction, and the salt fraction is used for lead and antimony extraction.

EFFECT: separating of silver, aurum and platinum metals is simplified, silver and aurum loss in water solutions is reduced, and power inputs and labour expenditures are lowered.

1 dwg, 5 ex

FIELD: metallurgy.

SUBSTANCE: invention relates to copper electrorefining leaded slimes treatment, with slimes containing lead, antimony, aurum, silver and rare chalcogens and may be used to produce collective concentrates of precious metals. The method considers two versions of slimes treatment. Both versions include consecutive leaching of slimes and floatation. According to the first version, slime is leached in sulfuric acid solution at a temperature of 104-106°C, partial oxygen pressure of 0.02-0.1 MPa and stirring with oxygen absorption speed no less than 0.001 mole O2/m3-hour-Pa, filtered and floated. According to the second version, slime is subjected to liquid-phase sulfurisation at a temperature 160-200°C, then to leaching by ferric (II) sulfate, filtration and floatation. Extraction of aurum and silver in concentrate reached 99.8%.

EFFECT: slime is reduced and content of precious metals therein increases 3,6-4,8 times.

2 cl, 2 ex, 4 dwg, 1 tbl

FIELD: mining.

SUBSTANCE: method includes preparation of a nepheline-lime-soda charge, its sintering in a tubular rotary furnace by heat released when burning fossil coal. After sintering, leaching, desiliconisation and carbonisation of an aluminate solution is carried out to produce alumina and soda products. The fossil coal to burn is a brown coal, the solid residue of which contains calcium oxide CaO of at least 30 wt %, and silicon oxide SiO2 of not more than 40 wt %. Brown coal from the Kansko-Achinskiy field is burnt.

EFFECT: reduced consumption of lime in charge preparation and lower content of silicon oxide in an aluminate solution, using a less scarce fossil coal as fuel.

2 cl, 2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: invention relates to hydrometallurgy of noble metals, particularly, to extraction of silver from silver-bearing wastes and may be used in processing various complex metal stock (radio electronic and computer hardware scrap, etc). Proposed method comprises anodic dissolution of silver in water solution of complexing agent in controlled potential electrolysis with anode from initial stock and insoluble cathode. Sodium sulphate with concentration of 12-370 g/l is used as complexing agent. Anodic dissolution is performed at 18-50°C and anode potential of 0.40…0.74 V relative to normal hydrogen electrode. Note here that the process proceeds in closed-volume non-aggressive alkalescent medium.

EFFECT: selective extraction of silver, higher rate of silver dissolution, ruled out use of toxic substances.

5 ex

Up!