Tailing storage development method

FIELD: mining.

SUBSTANCE: separation of tailings into fractions is performed at tailing drain points on inclined surface, on which system of settling trenches with reinforced-concrete trays laid in them is created. Width of the tray bottom is equal to width of bucket of extraction-loading equipment. Then, mechanical cleaning of settling trenches from conditioning tailings is performed.

EFFECT: reduction of impoverishment of tailings and costs for development of useful components.

3 dwg

 

The invention relates to mining, in particular to the development of existing watered tailings processing plants.

The known method development tailings (U.S. Pat. RU # 2199665, publ. 27.02.2003), which is characterized by the fact that the contoured within the reclaimed tailings area with conditioned content of useful component work out mechanically using a tunneling shield used for the collectors under roads without breaking the surface layer of the earth, and separated conditioned sand hydrotransport sent to processing plant for the extraction of useful components.

The disadvantage of this method is that it is not applicable for the development of a flooded tailings, significant costs for the development of the TMF.

The known method development tailings (U.S. Pat. RU # 2199011, publ. 20.02.2003), which includes the mining of the tailings excavator and transported to the beneficiation plant. The area of the tailings with the conditional content of useful components pre-framing and divided into zagadki. The length of the benches set protective submersible posts, benches produce selective dredging of sand.

The disadvantage of this method are the high cost of creating agradecer the Oh lining and maintenance of mining. Reduced intensity of mining tailings. This method is not applicable for the development of a flooded tailings.

There is a method of developing a "watered" tailings with a dredger (application RU # 93026198, publ. 10.03.1996)adopted for the prototype. The excavation of old tailings produced by the dredge, share them in the hydrocyclone into coarse and fine fraction, warehoused fractions using hydrotransport, dehydrated in maps of reclamation, shipment dehydrated fine particles are carried out by the excavator in the vehicle.

The disadvantages of the method development "watered" TMF:

1) complete mining of the Sands tailings, which are extracted as the conforming and non-conforming sand;

2) large energy costs associated with the development of "watered" tailing, the rapid depreciation of capital equipment;

3) a large number of equipment associated with the development of "watered" tailing.

The technical result of the invention is to reduce dilution tails and development costs with a high percentage of useful components.

The technical result is achieved in that in the method of mining tailings, including the separation of tailings into fractions, shipment fractions excavator in vehicles produced in places plum tails on decl is authorized surface, which create a system of sedimentation laid in trenches with them reinforced concrete trays, base width equal to the width of the bucket excavation and loading equipment, then after completing the precipitation of trenches produce their mechanical purification from conditioned tails with excavation and loading equipment.

On the inclined surface with the help of an excavator create a system of sedimentation trenches, in the precipitation of the trench stacked concrete trays, which allows under the action of gravity and energy drain to split tails on fractions and precipitation-rich tailings in the local place.

Reinforced concrete trays width of the base equal to the width of the bucket excavation and loading equipment, allow the cleaner to perform the cleaning of the bottom of the trench and place the maximum amount of precipitation trenches on the length of the inclined surface. This will allow you to share conditional tails.

Mechanical cleaning of concrete bins from conforming tails with excavation and loading equipment "backhoe" will prevent spillage of tailings through the protective mound when doing ochisnykh works and place, excavation and loading equipment on a dry surface for the limit system of sedimentation trenches.

The method is illustrated in the drawing is mi, which figure 1 shows a longitudinal section, figure 2, figure 3 - model:

1 - the current tailings pond gully type;

2 - precipitation trenches;

3 - heavy "rich" fraction tails;

4 - tails with an average mineral content;

5 - excavation and loading equipment ("backhoe" Fuchs);

6 - transport;

7 - substandard tails with a low content of useful component;

8 - protective embankment;

9 - water;

10 - drain tailings;

11 - concrete "trays".

The method is as follows. Before the actual watered tailings pond gully type 1, in places plum tails concentrator 10, the inclined surface is a system of collecting trenches 2 with the help of an excavator. Erosion trenches at the sink and clogging breed tails with conditioned mineral content during the excavation and loading in the precipitation system of trenches placed concrete trays 11 a width of the base equal to the width of the bucket excavation and loading equipment 3, 4. On the inclined surface of the precipitation system of trenches 2 creates a protective mound 8 to prevent the spill of tailings. Heavy "rich" fraction concentrator tailings are deposited near his summe is zi plum tails, and as the distance from the source, drain the content of useful component in the tails is reduced. Substandard tails with a low content of useful component merge into the body of the tailings are deposited on the bottom.

After filling precipitation trench is cleaned using excavation and loading equipment "backhoe", located next to the precipitation system of trenches, loading conditioned tailings directly into the dump truck 6. Used, excavation and loading equipment company Fuchs. Its advantage is the large radius of working area (up to 20 m) retractable cockpit, allowing you to elevate the operator, excavation and loading equipment on an inclined surface with precipitation system of trenches and increase visibility.

As a result of application of the proposed method is selective development of rich nutrients tails watered existing tailings gully type using the natural energy of separation. This will significantly reduce the cost of production conforming tails and effectively extract useful components from tailings produced at the processing plant.

The method of mining tailings, including the separation of tailings into fractions, shipment fractions excavator in vehicles, otlichuy is the, the separation of tailings into fractions produced in places plum tails on an inclined surface, which create a system of sedimentation laid in trenches with them reinforced concrete trays, base width equal to the width of the bucket excavation and loading equipment, then after completing the precipitation of trenches produce their mechanical purification from conditioned tails with excavation and loading equipment.



 

Same patents:

FIELD: agriculture.

SUBSTANCE: invention relates to flooding of worked out peatlands in the restoration of peat bogs. The method is carried out in the autumn-winter period with the establishment of a stable average daily air temperature below the freezing point of water with use of ice blocks made in the form of polyhedra. Near the available source of fresh water the blocks of ice are produced. Then the blocks manufactured using the vehicle are moved to the mapped areas of worked out peatlands and put in few layers in the structure in the form of a polyhedron. At that at each mapped area of worked out peatlands, depending on the area of the site one or more structures from blocks of ice are erected.

EFFECT: increased level of fire safety in the areas of worked out peatlands, reduced level of the risk of emergencies and improved overall environmental situation around the worked out peatlands.

2 dwg

FIELD: agriculture.

SUBSTANCE: invention relates to the field of recultivation, in particular, to restoration of disturbed lands located in overmoistened areas. The method is based on stimulating the processes of natural overgrowing and including a complete or partial removal of layer of sand previously applied to the bog to a residual layer above the surface of the bog 1-15 centimetres.

EFFECT: method enables to stimulate the natural overgrowing of disturbed lands, particularly wetland areas with the settlement and development of local wild plant species.

4 dwg

FIELD: construction.

SUBSTANCE: method includes water draining from an open pit, filling of a worked-out area. At the same time the worked-out area is filled with a mineral mass containing metals; water draining from the open pit and worked-out area filling are carried out simultaneously. Besides, the volume of the filled material is comparable to the volume of drained pit water, metals are extracted from the drained pit water by means of electric exchange sorption, technical water produced after sorption is divided into two flows, one of which is sent to process needs of production, and the other is sent via an electric cavitation plant to produce active oxygen, then is sent back to the pit to activate the process of internal pit leaching.

EFFECT: higher efficiency of water-logged pits reclamation.

1 ex, 3 dwg

FIELD: construction.

SUBSTANCE: method consists in removal of water from a drop, giving the specified position to the drop bottom, laying of a water-impermeable geomembrane onto this bottom and covering of a geomembrane and a beach with a protective layer from natural soil. The geomembrane edge is installed above the rated water level in the pond, created in the drop with atmospheric precipitation and put into economic turnover. In plan beyond the geomembrane the protective layer in its base comprises an antifiltration layer coupled with a geomembrane.

EFFECT: reduced scope of planning works and dust generation, increased suitability of area of a preserved pond for further use in a direction previously not characteristic for it.

5 cl, 1 ex, 2 dwg

FIELD: mining.

SUBSTANCE: method of pits conservation, including open-pit field mining, foundation pit with flattening of pit edges and their reinforcement along the periphery and pit flooding with water. Note that edges flattening is done till reaching the angle of safe cut. Along the lower flooded area of the edges along the whole periphery together with flattening of edges from sheared massive there formed is a retaining embankment till the mark corresponding the minimum water level in pit. After that the retaining embankment is covered by protective layer from macrofragmental material till the mark exceeding the maximum water level in pit to the height of wave run-up. Dumping of protective layer from macrofragmental material is done by segregation of consertal rocks as a result of mining-and-transport equipment unloading at the upper edge of the pit, the edges flattening till reaching the angle of natural slope is done above the minimum water level in pit.

EFFECT: increase of pit edges stability in the area of abrasion.

3 cl, 1 dwg

FIELD: mining.

SUBSTANCE: method involves filling of the worked-out area to the boundary of upper level of ground water with construction waste close as to its composition to natural minerals with fractions of various size, layer by layer with further compaction of each layer, laying of drainage layer with construction waste with thickness of not less than 0.6 metre and with fraction size of 150-200 mm. At that, topographic mapping of the whole pit is performed, and as per its results there made is planning with extraction of sections representing geological natural monument and sections subject to further filling. At that, filling with construction waste is performed while cuts of deposits representing geological natural monument are kept free, and possibility of access to them, monitoring them and arranging the museum of the Earth is provided. The rest sections of the pit according to the planning are broken into zones and filled; at that, overburden rocks are laid on the drainage layer. Hill is formed in one of the zones with its further terracing. Burial places are built on terraces. Columbarium and crematorium rooms are built in the rest zones. Foundation bases of the above buildings are arranged in the following sequence: first, overburden rocks laid on drainage layer are levelled, and piles are driven to the design depth from planning level of the pit. Then, buffer pad from sand of average grain size is made without compaction and binding concrete is provided above buffer pad. Zones are separated from each other by means of artificially created three-dimensional soil shapes, and tracks and access ways are covered with natural or artificial stone.

EFFECT: reducing labour costs of recovery work.

2 dwg

FIELD: mining.

SUBSTANCE: recovery method of mined-out pits involves filling of the worked-out area to the boundary of upper level of ground waters with construction waste close as to its composition to natural minerals, laying of drainage layer of construction waste with thickness of not less than 0.6 metre and with fraction size of 150-200 mm. At that, first, planning is performed and cuts of deposits of average coal age are determined. Filling with construction waste is performed while those cuts of deposits of average coal age are kept free, and access is provided to them in order to monitor them and to arrange the museum of the Earth. Then, in the centre of the pit, on the drainage layer there laid are overburden rocks; at that, a hill is formed; after that, when the hill height reaches average absolute level, terracing of hill slopes is performed by means of a bulldozer; and section is pre-broken and furrows indicating the boundaries of the future terraces, tracks and access ways are ploughed. Bed of each terrace is formed with reverse cross slope to two gradients; at that, width of terrace bed is not less than seven metres. For each terrace, starting from lower tier of terraces, along the whole perimetre of the pit, there built are embankment plate or stone walls and they are bound with cement mortar. Drainage system is routed and burial places are built on terraces.

EFFECT: reducing labour costs of recovery work owing to excluding the necessity of extraction of large volumes of soil for creation of fertile layer.

1 dwg

FIELD: mining.

SUBSTANCE: method involves selective mining, movement and storage in separate soil wastes; at that, soil groups are laid periodically to the waste height of 2.5 m, at flattening of 25-35 waste boards. At that, lower part of the group which is 15-20 cm thick - low-fertile overburden rocks; middle part of the group which is 10-12 cm thick is laid with natural looser with fraction size of not more than 10 mm and upper part of the group is filled with organic fertiliser.

EFFECT: reduction of bioproductivity of clay soils and improvement of protection of recultivated soils against wind erosion.

3 cl, 1 tbl, 2 dwg

FIELD: mining.

SUBSTANCE: method includes separate excavation, movement and storage of the soil layer and overburden rocks, mining of the open-pit field, filling of the mined space to the border of the upper level of ground water with construction wastes close in their composition to natural minerals, laying of the draining layer from construction wastes, with thickness of at least 0.6 m and fraction size of 150-200 mm. After filling of the pit with construction wastes, terracing is carried out using a bulldoser, at the same time at first the site is laid out, and furrows that mark borders of future terraces, paths and access roads are tilled. Then the bed of each terrace is formed serially with the bulldoser with a reverse cross inclination up to two degrees, along the entire perimetre of the pit. Bed width at each terrace is arranged as at least equal to seven metres. Then retaining walls are arranged from plates or stones and are bound with cement mortar. The drainage system is laid, and places are arranged on the terraces for burial of the deceased.

EFFECT: reduced labour inputs and cost of recovery works.

1 dwg

FIELD: environment protection.

SUBSTANCE: the invention relates to reclamation of worked-out pits. The method includes backfilling of worked-out space up to the upper underground water level by construction waste close to minerals by composition, and setting drainage layer. After the pit is filled with construction waste, terracing is carried out using a bulldozer. Furthermore, at first the area is divided and ribs are plowed, the ribs indicate the borders of future terraces. The bed of each terrace is formed by a bulldozer with reverse crossfall up to 2 degrees. Support walls are erected along the whole perimeter of the pit and drainage system is installed, while decorative plants, lawns and gardens are organized.

EFFECT: reduced labour intensity of worked-out pits reclamation, soil is protected from wind and water erosion.

2 cl, 1 dwg

FIELD: earth recovery during drilling work performing.

SUBSTANCE: method involves waterproofing sump walls and bottom; filling thereof with used drilling mud; pumping-out liquid phase and filling thereof with peat and mineral ground. Liquid phase is previously accumulated in the sump and cleaned. Mineral ground, peat and used drilling mud are mixed one with another and supplied to bank slope or to road slope. Then grass is planted on slopes. Cleaned liquid phase is used for grass watering.

EFFECT: increased quality of earth sump reclamation.

1 dwg

FIELD: mining, particularly reclamation of surface-mined areas in agriculture and building industry.

SUBSTANCE: method involves selectively excavating, moving and accumulating ground layer and overburden in separate strip dumps; excavating open-pit field; filling and smoothing thereof and ground layer laying. After open-pit field excavation the excavated space is filled with building waste up to high ground water layer. The building waste has composition close to that of natural minerals with different fraction dimensions. The building waste is laid in several layers each having thickness of 40-60 cm. Each layer is compacted with soil compactors or compacting mechanism. Then draining layer is laid. The draining layer has particle dimensions of 150-200 mm and thickness of not less than 0.6 m. The draining layer is compacted by vibratory plates. Draining layer is covered with fertile ground so that fertile ground layer having thickness of not less than 0.3 m is created. Then straw layer in which chemical fertilizers and perennial grass seeds are added is formed over fertile ground layer. The straw layer is smoothed and sprinkled with dispersions containing water-soluble polymeric substances and synthetic water-soluble phosphates, wherein synthetic water-soluble phosphates are taken in amount of 1-4% by ready dispersion weight.

EFFECT: reduced labor inputs and reclamation work costs, improved land protection against wind erosion and scouring.

4 cl, 1 dwg

FIELD: mining, particularly reclamation of surface-mined areas in agriculture and building industry.

SUBSTANCE: method involves selectively mining, moving and accumulating ground layer and overburden in separate strip dumps; excavating open-pit field; smoothing thereof and ground layer laying. After open-pit field excavation the excavated space is filled with building waste up to high ground water layer. The building waste has composition close to that of natural minerals with different fraction dimensions. The building waste is laid in several layers each having thickness of 40-60 cm. Each layer is compacted with soil compactors or compacting mechanism. Then draining layer is laid. The draining layer is layer of gravel-sand ground with particle dimensions of not more than 200 mm and has thickness of not less than 0.6 m. The draining layer is compacted by vibratory plates. Then two parallel spiral channels are excavated along each pit perimeter from slope side. Coil of each channel starts at pit slope top and terminates at bottom thereof at upper ground water level. Both channels are filled with building waste having particle dimensions of not more than 150 mm. After that holes for trees planting are dug out, wherein the holes are arranged between channel coils. Drainage layer is located on hole bottoms so that the drainage layer is connected with building waste of the channels and holes are filled with fertile ground. Then perennial grass, bushes and trees are planted in the reclamated land.

EFFECT: reduced labor inputs and reclamation work costs, improved land protection against wind erosion and scouring.

2 cl, 1 dwg

FIELD: environment protection, particularly to protect nature against dust blown off with wind from man-made massif surfaces.

SUBSTANCE: method involves contouring dust-forming surface and creating protective structures on dust-forming man-made massif surface in two mutually perpendicular directions, namely transversely to and along prevailing wind action directions; determining wind speed Vlim, m/s which provides maximum permissible dust concentration and maximal prevailing wind speed Vmax, m/s at massif sanitary zone boundary; partitioning man-made massif surface into square areas; installing protective barriers along protective barrier perimeters, wherein the protective barriers are formed of cellular material. Each square area has side length Lar determined from mathematical expression.

EFFECT: reduced dust carryover.

2 dwg, 1 ex

FIELD: mining, construction engineering, possible use during technical reclamation of quarry pits.

SUBSTANCE: method includes extracting the quarry field, forming paired stopping walls in extracted space of quarry field, filling the space between paired stopping walls by construction wastes, while preserving full height of draining and ventilation channels, and building a ceiling. After extraction of quarry field, present hanging sides of quarry walls are collapsed to impart required verticality to them, flexible longitudinal links are attached to quarry walls with following guniting of quarry walls with solidifying solution across whole perimeter of extracted quarry space. Then, quarry bottom is evened out with following densification by means of rolling with appropriate machines and devices, after that wells are drilled in soil by means of washout and soil is mixed with solidifying solution, then reinforcing cage is mounted therein with simultaneous feeding of concrete mixture for making iron-concrete pile in soil-cement cover, while diameters of soil-cement covers overlap one another, creating a foundation having increased filtration and hardness characteristics, paired stopping walls are built along perimeter of quarry, letting flexible longitudinal links through them with their following attachment inside paired stopping walls, and columns are set up to make a ceiling.

EFFECT: expanded area of possible use of extracted and reclaimed quarries, for example, for further industrial construction.

3 cl, 1 dwg

FIELD: mining industry, possible use for reclamation of damaged lands in agriculture, power-construction industrial branches.

SUBSTANCE: method includes, after extraction of quarry field is finished, closure of each quarry by reinforced structures made in form of sleeves of geo-synthetic material and filled with milled construction wastes, while ends of sleeves are sewn shut. Reinforced structures are placed one after another, closely to each other. On top of reinforced structures, draining layer is filled, then a layer of stripping rocks and finally a layer of potentially fertile soil with following seeding thereof with perennial grasses, brushes and trees.

EFFECT: decreased laboriousness and costs of restorative operations.

3 cl, 1 dwg

FIELD: mining industry.

SUBSTANCE: method includes separation of fertile layer during opening of mineral resources and stocking of rock during extraction of same, planning of open mines by backfill with rock and application of fertile layer with restoration of vegetation in accordance to land usage direction. During backfill of rocks into open mines, inclined trench is made from earth surface to open part of exposed formation outlet being left in sides of mine, which provides access and following underground extraction of left deposit resources, and is meant to be a part of payable area.

EFFECT: combination of coal extractive processes with reclamation of lands and preservation of access to concealed resources for their later extraction.

4 cl, 5 dwg

FIELD: methods of underground or surface mining, particularly reclamation of surface-mined areas after production of building stone and other surface-sited minerals.

SUBSTANCE: method involves developing open-pit field; caving hanging walls of the pit; forming floor; installing one-sided form and filling the created space with claydite-concrete; arranging heat-insulation and water-proofing screen along pit wall so that the screen extends for the full wall length, wherein the heat-insulation and water-proofing screen includes heat-insulation material combined with waterproofing sheets of surface waterproofing agent; erecting paired support walls provided with natural ventilation system along pit perimeter so that the support walls are spaced predetermined distance from pit wall; covering space between paired support walls and pit wall with surface waterproofing agent and filling the treated space with ice.

EFFECT: extended field of exhausted pit usage, for instance for further freezing facility construction.

3 cl, 1 dwg

FIELD: mining and processing industry, particularly to reclaim soil in agriculture and building and power engineering industries.

SUBSTANCE: method involves performing selective mining, conveying and stacking ground layer and overburden in separate strip dumps; developing pit field; filling exhausted space with building waste in several layers along with rolling of each building waste layer; leveling thereof with overburden and laying ground layer. Pit is filled with building waste up to mid-height pit level, but not under ground water level. After that building waste is rolled and covered with overburden for total pit filling. Then overburden layer is leveled. To prevent ground settlement wells are formed along filled pit surface, wherein the wells are formed up to design depth and are filled with building waste with each building waste portion compaction. Overburden layer, building waste layer, reinforced structure level formed of geo-synthetic sleeves filled with building waste milled to obtain particle dimensions of not more than 150 mm are serially laid on filled pit.

EFFECT: decreased labor inputs and costs.

1 dwg

FIELD: construction and mining, particularly reclamation of pit depressions after building stone and other surface mineral production.

SUBSTANCE: method involves working out pit; filling the worked-out space; leveling thereof and laying ground layer thereon. After pit working-out ditch and water-draining trenches are formed along pit perimeter to impart regular geometrical shape to pit along with pit side flattening to obtain pit sides inclination of not more than 30° along with following pit side compaction by rolling thereof with compaction machines and mechanisms; pouring sand on designed pit slopes; laying impervious screen made of high-density polyethylene on sand layer; pouring ground layer having thickness of not less than 0.5 m on the impervious screen; covering pit bottom with clay layer; compacting clay layer and inclining thereof towards collecting well composed of reinforced concrete rings; arranging radial bed drainage of crushed stone and sand on pit bottom so that the drainage is directed towards collecting well; forming water-removal ditch along pit perimeter; filling the pit with compacted building waste briquettes; arranging clay screen having thickness of not less than 0.3 m over building waste briquettes; arranging plant layer on clay screen.

EFFECT: decreased labor inputs and reclamation work costs.

Up!