Pump-accumulator hydraulic drive to rotate earth-mover platform

FIELD: construction.

SUBSTANCE: pump-accumulator hydraulic drive to rotate an earth-mover platform comprises a controlled pump, hydraulic distributors, safety and check valves, a hydraulic accumulator, a relay controller, connected to each other by hydraulic manifolds, and a controlled hydromotor. At the same time one of hydraulic distributors is installed between the controlled pump and the controlled hydromotor of platform rotation. Safety valves are valves with two adjustment pressures. The second hydraulic distributor is arranged between the controlled pump and the first hydraulic distributor, serving to change power streams from the controlled hydraulic pump to the hydraulic accumulator.

EFFECT: maximum use of kinetic energy of a rotary platform, reduced wear and lower loads in a mechanism of earth-mover platform rotation, reduced quantity of hydraulic scheme elements.

1 dwg

 

The device relates to earth-moving machines, namely, to drive platforms of earth-moving machines.

Known pump-and-accumulator hydraulic digging machine (inventor's certificate SU # 831929, IPC E02F 9/22, published 30.12.1981 year), including a hydraulic accumulator, hydraulic platform rotation, valves, feed pump pressure relief and check valves.

The disadvantage of the invention are not enough full use of the energy potential of a rotating object, the design complexity, the presence of dynamic loads during braking.

The closest in design to the technical essence and the achieved result to this invention is a Pump-and-accumulator hydraulic platform rotation earthmoving machinery adopted for the prototype (inventor's certificate SU # 1201427, IPC E02F 9/22, published 30.12.1985), including the pump, the valves, one of which is installed between the pump and the hydraulic platform rotation, safety and check valves, hydraulic accumulator and supply lines, the second hydrospatial installed between the hydraulic accumulator and the hydraulic platform rotation, the pump is a variable capacity with power control pressure, and the hydraulic accumulator through the underwater additional check valve is associated with controller power pressure and through another check valve through another hydroaspartate - with hydraulic platform rotation.

This design has several disadvantages, namely:

- inability maximum use of the kinetic energy of a rotating object;

- the presence of dynamic loads during braking;

- complicated design.

The objective of the invention is the use of the kinetic energy of the rotary platform, reducing wear and reducing stress in the mechanism of the rotation platform of earth-moving machines, reducing the number of elements of the hydraulic circuit.

The use of an adjustable hydraulic motor and safety valves with two adjusting pressure allows maximum use of the kinetic energy of the turntable leveler, to reduce the number of applicable elements of the hydro scheme, to reduce the wear and dynamic load when braking the rotating part of the earthmoving machine.

This is achieved by the fact that pump-and-accumulator hydraulic platform rotation earthmoving machine includes adjustable pump, two valves, one of which is installed between the variable pump and variable motor rotation platform, safety and check valves, hydraulic accumulator, relay controller, interconnected hydrologically, and as a safety CL the Panov use valves with two setting pressure, the second valve is configured to change the power flows and is located between the adjustable hydraulic pump and the first valve.

Figure 1 shows the hydraulic diagram of the pump-and-accumulator drive rotation platform of earth-moving machines.

Pump-and-accumulator hydraulic platform rotation earthmoving machinery includes: adjustable hydraulic pump 1, is attached to the valve 2 changes in power flows and to the valve 3 by using hydrologically 4, located between the adjustable pump 1 and an adjustable hydraulic motor 5, a relief valve 6 with two adjusting pressure and return valves 7 are located between the adjustable hydraulic motor 5 and the valve 3, the hydraulic accumulator 8 and the relay controller 9 connected to the valve 2 changes in power flows through supply lines 4, the safety valve 10 is located between the accumulator 8 and the oil tank 11, the supply lines 12 of the control signal is connected to the valve 3 and safety valves 6 with two setting pressure.

Operation let us consider the work of the excavator.

The device operates as follows. In the beginning of the excavator control valve 2 is in such position that the power flow is from the controlled hydraulic pump 1, when turning on the valve 3 signal hydrologically control 12 reaches the safety valve 6 with two setting pressure, the rotary platform excavator starts rotation when the valve 6 with two setting pressure for acceleration turntable excavator flow of the fluid, preventing abrupt starting of the platform and the fit of hydrologically 4 from the hammer, the liquid is passed safety valves 6 with two adjusting pressure charging of the hydraulic accumulator 8.

At the beginning of the braking process platform control ceases. The valve 3 is in the neutral position, adjustable hydraulic motor 5 starts to build up fluid in the hydraulic accumulator 8, converting the kinetic energy of the rotating platform in the energy of the liquid. Fluid pressure is supplied through the check valve 7 from the oil tank 11. When the control signal to the valve 3 is stopped, the safety valve 6 with two adjustment pressures begin to work with a different setting pressure without creating resistance flowing fluid, the working fluid is pumped into the accumulator 8. Accumulated in the accumulator 8 potential energy can be used for platform motion.

Pump-and-accumulator the hydraulic drive rotation platform leveler includes adjustable pump two valves, one of which is mounted between the adjustable hydraulic pump and hydraulic motor, platform rotation, safety and check valves, hydraulic accumulator, relay controller, interconnected hydrologically, characterized in that use adjustable hydraulic motor as a safety valve use valve with two setting pressure and the second valve is configured to change the power flows and is located between the adjustable hydraulic pump and the first valve.



 

Same patents:

FIELD: machine building.

SUBSTANCE: proposed device comprises first and second engine openings communication L' and N' for communication with two-way hydraulic motor D, and openings M' and O' for communication with manual-control valve H. Besides, valve device comprises normally-closed proportioning load-adjustment valve E and check valve 12 with outlet communicated with aforesaid second opening N' and inlet communicated with opening O'. Note here that check valve 12 is pre-stressed for opening solely in case its inlet exceeds preset pressure range.

EFFECT: higher reliability.

1 cl, 7 dwg

FIELD: machine building.

SUBSTANCE: proposed device comprises first and second openings L and N in two-way hydraulic motor D, tank T, pump I, manual valve H and first retaining valve 1A, 8. Note here that manual valve is arranged to communicated openings L, N with tank T and pump I. Note here said valve H has two positions. In first position, pump I is communicated via pipeline F with first opening L while tank T communicates via pipeline G with second opening N. In second position, pump I communicates via pipeline G with second opening N while tank T is communicated via pipeline F with first opening L. Note here that first retaining valve 1A, 8 is arranged between pump I and second opening N to open toward second opening N. Besides, device comprises piston 2 to control first retaining vale 3 arranged to communicate first opening L with second opening N and to open toward second opening N.

EFFECT: higher efficiency.

9 cl, 6 dwg

FIELD: machine building.

SUBSTANCE: method of controlling working mechanism includes the following stages: determination of maximum pressure of hydraulic fluid for independent fulfilment of certain task for, at least, one of operating functions; hydraulic fluid supply which pressure does not exceed certain maximum pressure for fulfilment of this operating function; and fluid pressure control with the aid of, at least, one control valve as pressure reducer connected with this operating function.

EFFECT: increase of operation efficiency in condition of large loads at mechanism operating component.

26 cl, 3 dwg

FIELD: machine building.

SUBSTANCE: proposed system comprises first assembly of actuators to control first hydraulic function, pump to feed hydraulic fluid at pressure into said actuators, electrically control valve to control pump discharge pressure by hydraulic signal, first pressure transducer to measure load pressure of the said first assembly of actuators, and control unit to receive signal containing data on load pressure measured by first pressure transducer and to generate control signal corresponding to first measured load pressure to be transmitted to said control valve. Note here that control unit allow determining required pump pressure so that difference between measured load pressure and pump pressure varies depending upon operating conditions.

EFFECT: higher efficiency of control.

18 cl, 3 dwg

FIELD: machine building.

SUBSTANCE: proposed system comprises, at least, one hydraulic cylinder to handle cargoes, accumulator and valve to control flows between said cylinder and said accumulator. Note here that said system comprises first control valves arranged on tube connected to hydraulic cylinder piston side, second control valve arranged on tube connected to cylinder rod side, first hydraulic cylinder pressure transducer, second accumulator pressure transducer, and control unit. Note also that control unit receives signals containing data on pressures measured by aforesaid transducers and to generate signals to control damping control functions. Invention covers also method of damping working tool comprising measuring accumulator and hydraulic cylinder pressures, and controlling damping functions in compliance with measured pressures. Note here that pressures between accumulator and cylinder piston are equalised and flow between accumulator and tank are controlled by control valve arranged on tube secured to hydraulic cylinder piston side.

EFFECT: higher efficiency.

37 cl, 2 dwg

FIELD: mining.

SUBSTANCE: system to control mining machine comprises a hydraulic drive of travel and a drilling rod with a power hydraulic control unit, a hydraulic drive of a loading element and hydraulic cylinders of a drilling rig with a power hydraulic control unit, an electrohydraulic unit of power hydraulic units control with a system of electric interlocks, sources of supply for hydraulic drive and control systems. At the same time power hydraulic units to control a hydraulic drive of travel, a drilling rod, a hydraulic drive of a loading element and hydraulic cylinders of a drilling rig are equipped with additional locking devices installed between sections of the hydraulic control units.

EFFECT: locking of the caterpillar drive and loading element drive during operation of drilling equipment to ensure safety of maintenance personnel.

1 dwg

FIELD: machine building.

SUBSTANCE: test bench for digging-transporting machines of bucket type consists of full-size digging-transport machine of bucket type with hydraulic drive, of loading system, of position sensors and of computer. Each cavity of the hydraulic cylinder of hydraulic drive of working equipment is equipped with the hydraulic system of loading. It includes a regulated throttle with proportional electric control - a back valve and a pressure gauge. The back valve is parallel connected to the regulated throttle with proportional electric control. An inlet cavity of the back valve on a side of the seat is connected to one outlet of a distributor of fluid of hydraulic drive of digging-transporting machine by means of one pipeline; while an outlet cavity of the back valve is connected to the cavity of the hydraulic cylinder of the hydraulic drive of the digging-transporting machine by means of another pipeline. The pressure gauge is connected to the same cavity. The output of the gauge is connected with an inlet of the computer, while an electric input of the control unit of the regulated throttle with proportional electric control is connected with an output of the computer.

EFFECT: simplified design of bench, reduced expenditures for its fabrication and raised reliability of tests.

2 dwg

FIELD: machine building.

SUBSTANCE: hydro-system consists of tank, of working equipment pump, pressure main of which is connected with rod and piston cavities of hydro-cylinder of working equipment and hydraulic motor by means of hydraulic distributors, and of safety valve. The hydro-system has an accumulator of replenishment, a hydraulic distributor, a control valve and a throttle. Also, the accumulator of replenishment is connected with a drain main, with the tank via the safety valve, with an input of the hydraulic distributor and with a control cavity of the hydraulic distributor through the control valve. Further, via a throttle, it is connected with a suction main of the pump. The suction main is coupled with an output of the hydraulic distributor.

EFFECT: reduced losses of hydraulic energy in hydraulic system.

1 dwg

FIELD: transport.

SUBSTANCE: proposed preheater comprises hydraulic pump articulated with heat engine and gas heat carrier circulation circuit. Proposed device incorporates heat-isolated chamber and flexible heat-isolated metal hose communicated with inlet branch pipe of heat-isolated chamber mounted for heating interval via special guides outside of hydraulic tank bottom nearby hydraulic pump suction branch pipe. In operation, heat-isolated chamber discharge branch pipe is communicated by similar metal hose with atmosphere. Proposed method of cleaning consists in intermittent feed of preset amount of finely dispersed NaO2 agent into heat-isolated chamber to oxidise (burn out) deposited solid particle after prestarting heater withdrawn from the machine.

EFFECT: simplified design, higher efficiency at negative ambient temperatures.

3 cl, 2 dwg

FIELD: machine building.

SUBSTANCE: power efficient working equipment consists of turning platform, of gantry, of boom, of stick, of bucket, of hydro-cylinders of boom lift. of hydro-cylinders of stick turn and of hydro-cylinder of bucket turn. In vertical plane of symmetry of the boom between hydro-cylinders of stick turn there is installed a pneumatic hydro-cylinder pivotally secured on the turning platform and the boom, a piston cavity of which is connected at least with two gas tanks charged with compressed air at pressure over 10 MPa. Total volume of gas tanks amounts to at least four working volumes of the pneumatic hydro-cylinder. At least one hydraulic damper of working fluid pressure charged with compressed air over 15 MPa is connected to piston cavities of the boom hydro-cylinders.

EFFECT: improved design of working equipment of hydraulic excavator, reduced fluctuations of pressure in hydro-system of working equipment.

2 dwg

FIELD: earth-moving facilities; hydraulic drives of scraper working members.

SUBSTANCE: proposed hydraulic drive contains pressure spool installed in parallel with like spaces of two hydraulic cylinders, pressure main line connected between two check valves, free outlet of check valve being connected with inlet of pressure spool and one hydraulic cylinder. Free inlet is connected with outlet of pressure spool and other hydraulic cylinder, drum main line connects opposite spaces of hydraulic cylinders. Hydraulic drive is furnished with two series-connected pressure spools. Inlet of first pressure spool and outlet of second pressure spool are connected with outlet of first hydraulically controlled reversible spool. Their common line is connected with controllable space of second hydraulic cylinder and is separated by check valve from pressure main line. Inlets of first hydraulically controlled reversible spool are connected to outputs of second hydraulically controlled reversible spool and are connected with controllable spaces of first and second hydraulic cylinders. One inlet of second hydraulically controlled reversible spool is connected with inlet of pressure spool and is connected to pressure line through check valve, and second inlet is separated from pressure line by other check valve. Control spaces of two hydraulically controlled reversible spools are united and are connected to pressure main line through two-position spool.

EFFECT: improved efficiency of control of scraper blade system.

4 dwg

FIELD: handling machinery, particularly soil-shifting, mining, agricultural and loading cyclic machines.

SUBSTANCE: device includes implement, main hydraulic cylinders and balancing hydraulic cylinder, at least one gas cylinder and hydropneumatic accumulator, main and additional hydrodistributors, as well as safety valve. Gas cylinder communicates with gas chamber of hydropneumatic accumulator. Device made in the first embodiment has the second additional hydrodistributor connecting working chambers of the main hydraulic cylinders with each other and with pump. Rod end of balancing hydraulic cylinder communicates with rod ends of the main ones. In the second embodiment additional hydraulic cylinder is arranged in main hydrodistributor case and connected to hydrolines of the main hydraulic cylinders through hydrolines. Additional hydrodistributor is installed so that additional hydrodistributor may connect working chambers of the main hydraulic cylinders with each other and with the pump when additional hydrodistributor is installed in the first position. Additional hydrodistributor being installed in the second position may connect working chambers of main hydraulic cylinders with each other and with drain. Rod end of balancing hydraulic cylinder is connected with rod ends of main hydraulic cylinders.

EFFECT: increased machine productivity due to increased implement hoisting speed.

3 cl, 4 dwg

FIELD: mechanical engineering, particularly hydraulically driven dredgers.

SUBSTANCE: drive comprises power plant with controlled power pumps having servo control taps, gear-box, hydraulic motors and hydraulic equipment. Hydraulic equipment has hydraulic distributor with address travel spool and its servo control taps, power hydraulic lines and servo control loop with hydraulic lines. The controlled power pumps may supply predetermined volume of working liquid at zero pressure in servo control lines thereof. Hydraulic lines for servo control of address travel spool have additional circuit including control unit, servo control lines and logical hydraulic OR valve with two inlet and one outlet taps. Hydraulic lines of servo control circuit included in additional loop are connected with inlet taps of hydraulic OR valve having outlet tap communicated with servo control taps of address travel spool.

EFFECT: provision of no-failure gear actuation in standing still dredger.

2 dwg

FIELD: mechanical engineering, particularly hydraulic systems for mobile machines.

SUBSTANCE: hydraulic system comprises hydraulic reservoir, controllable hydraulic pump with load-sensitive control slide, power hydraulic line protected with safety valve, main hydraulic distributor with three-position slide having one pressure supply means, two discharge lines, two working outlet means and line, which provides connection of each working outlet means with LS line, attached to control slide. The hydraulic system is provided with pressure control valve and with controllable reducing valve installed in LS line. Input and output of reducing valve are connected to hydraulic distributor and control slide correspondingly. Control line of reducing valve is linked to pressure control valve outlet. Inlet and discharge line of the pressure control valve are connected with power hydraulic line and with hydraulic reservoir correspondingly.

EFFECT: increased operational efficiency and reliability.

7 cl, 1 dwg

FIELD: earth-moving, mining, building machines and other wheeled and caterpillar handling periodically acting machines.

SUBSTANCE: device comprises working implement, main and balancing hydraulic cylinders, gas cylinder, main and additional working liquid distribution means. The piston cavity of balancing hydraulic cylinder is connected with gas cylinder. Additional distribution means may connect working cavities of main hydraulic cylinders one with another and with hydraulic pump during implement lifting.

EFFECT: increased working implement lifting speed without pump and system parameter change.

4 dwg

FIELD: mining industry, mechanical engineering, possible use in system for controlling caterpillar drive of mining machine.

SUBSTANCE: hydro-system contains pumps for caterpillar drive and pump, feeding system of working functions of machine, hydro-distributors for controlling caterpillar drive, driving hydro-motors and working mains, two controllable check valves and hydro-distributor for controlling system of machine working functions. Outlet channels of hydro-distributor for controlling system of machine working functions are connected to inlet channels of controllable check valves, which are connected between each other. Outlet channels of these valves are connected to working mains of driving hydro-motors and hydro-distributors for controlling caterpillar drive.

EFFECT: possible movement of mining machine in case of breakdown of driving pumps at the expense of influx of working liquid from pump driving system normally used for working functions of machine.

1 dwg

FIELD: earth moving machinery.

SUBSTANCE: invention relates to hydraulic drives of draw-booster gears of tractor-drawn scrapers. Proposed hydraulic drive contains pump, hydraulic tank, hydraulic cylinder, pressure valve connected in parallel with hydraulic cylinder, and hydraulic distributor. Hydraulic drive contains additionally hydraulic accumulator, time relay, check valve, pressure valve is provided with control line, and hydraulic cylinder has control arm engaging with two-position spool whose input is connected with pump and output, through time relay, with hydraulic accumulator and control line of pressure valve and with input of check valve whose output is connected to input of pressure valve.

EFFECT: provision of automatic continuous increase of adhesion weight of tractor of scraper when digging.

3 dwg

FIELD: earth-moving and transport machines, particularly blade assemblies having changeable width of cut.

SUBSTANCE: blade assembly comprises side sections and central section. The sections are provided with undercutting blades and are directly connected to bucket bottom. The central section is hinged to bucket bottom and is operated by rotation hydraulic cylinders through operation levers. Undercutting blades made as gussets are connected to inner edges of side sections from below. The gussets have supports to cooperate with central section in lower position thereof. Undercutting blades of central section are connected to outer side edges of central section. Undercutting gussets are provided with orifices to arrange fixers installed in lower parts of side sections so that they may cooperate with end switches. Position switches adapted to cooperate with operation levers of central section in central or extreme positions are mounted on bucket side walls. Hydraulic cylinders for central section rotation are linked in pairs to hydraulic cylinders for bucket operation. Lifting and lowering cavities of hydraulic cylinders are correspondingly communicated with raising and deepening cavities of hydraulic cylinders for central section rotation. Hydraulic drive for blade assembly includes hydraulically operated on-off three-way slide. The first outlet of the slide is united with the third one and is linked to raising cavity of hydraulic cylinder for central section rotation. Operational chamber and the first inlet of the slide are connected to outlet of pressure slide having output connected to lowering cavities of hydraulic cylinders for bucket operation. The second and the third inlets of on-off three-way slide are correspondingly connected to lifting cavities of hydraulic cylinders, which operate front bucket gate and lowering cavity of hydraulic cylinders for bucket operation.

EFFECT: decreased load to be applied to blade system during earth cutting as central section is in central and extreme positions, provision of automatic installation of above section in side blade plane and in extreme positions.

9 dwg

FIELD: mechanical engineering.

SUBSTANCE: group of invention relates to boom earth-moving, mine, construction and loading lifting-and-transporting machines of cyclic action. Proposed balancing system contains working equipment, boom hydraulic cylinders and balancing cylinder including hydraulic rod space and gas piston space connected with gas bottle, and distributors. According to first design version, hydraulic rod space of balancing cylinder is connected by hydraulic line with drain into hydraulic tank, and distributor of hydraulic liquid is installed for connecting in one position of spool, of boom hydraulic cylinders working spaces to each other with hydraulic pump. According to second design version, distributor is installed in system for connecting working spaces of boom hydraulic cylinders to each other and with hydraulic pump. According to third design version, rod space of balancing cylinder is connected with distributor installed for connecting, in one position of spool, of rod space of balancing cylinder with into hydraulic tank, and in other position, with hydraulic pump. Distributor is installed in hydraulic line of boom hydraulic cylinders for connecting, in one position of spool, of spaces of boom hydraulic cylinders to each other and with hydraulic pump.

EFFECT: increased capacity of machine owing to higher speed of lifting and lowering of working equipment.

5 cl, 6 dwg

FIELD: mechanical engineering, particularly earth-moving and construction equipment to be operated at low temperatures.

SUBSTANCE: device for hydraulic drive heating comprises heat engine and hydraulic pump kinematically connected with each other. Device also has liquid heat carrier circulation loop including heat accumulator. Heat pipe is connected to heat engine exhaust pipe through two-way valve. Heating member is arranged in tank and linked to heat engine generator.

EFFECT: increased simplicity and efficiency of hydraulic drive heating at negative ambient temperatures.

1 dwg

Up!