Electrical machine

FIELD: electricity.

SUBSTANCE: in a proposed electrical machine, comprising a device for development of a magnetic field, where an inductor is represented by ferromagnetic cores with electric coils, and devices for conversion of one type of energy into another one, according to the invention, the device for development of the magnetic field is made as a separate unit in the form of a flange with concentric flanges on the wall made of non-magnetic and dielectric materials. In through radial slots made on flange collar rims, in a certain sequence, ferromagnetic cores are fixed with electric coils, which form pole pairs of the electrical machine. Stiffness of ferromagnetic cores fixation with electric coils in slots is ensured by a pressing cover, which is also made from non-magnetic and dielectric material. The device to convert one type of energy into another one consists of two rotors. One rotor is installed in the inner part of the device to develop a magnetic field and interacts with a so called main magnetic flux Φm and interacts with a so called magnetic leakage flux Φl.

EFFECT: higher efficiency of electrical machine operation due to using a magnetic leakage flux Φl in electric motors to develop a torque Mt, and in current generators - for production of electric energy.

4 dwg

 

The invention relates to electrical engineering and can be used to generate electrical energy and conversion of electrical energy into mechanical energy.

The closest in technical essence is single-phase electric AC machine type motor-generator current, consisting of a device for creating a magnetic field of the stator, and a device for converting one form of energy into another - rotor (L.M. Piotrovsky, Electrical machines, Gosenergoizdat, 1958, mainly 40, str).

Widely used electrical machines AC, single-phase induction motors. They find application in actuators which supply three-phase or direct current difficult or impractical. This home appliances, electrical appliances, power tools, etc.

The drawback of such electric machines is that in the operation of the electrical machine is only one magnetic flux of the two created a device to create a magnetic field. The magnetic flux involved in the interaction with the rotor, called the primary magnetic flux FD, and the magnetic flux passing through the housing (yoke) of the electric machine and not interacting with the rotor, called the magnetic flux FR. This is the reason more effective the Noi operation of the electrical machine.

The reason preventing people from getting below the technical result in the manufactured industry like electrical machines, is accepted by the device to create a magnetic field (inductor), which is the stator. Let us consider the example of a single-phase asynchronous motor.

Typically, the device for creating a magnetic field of single-phase induction motors is a separate ferromagnetic cores are worn on their electric coils. Cores with electric coils pole pairs and are attached to the yoke (f) of the electric machine.

Figure 1 shows one of the structures of single-phase asynchronous motor with two pairs of poles. It consists of a yoke, generally, employee housing of the electric machine, the cores of the poles, electric coils of the poles and rotor. Electric coil pole core is an electromagnet having two pole. The magnetic flux of one pole of the electric coil facing the rotor, passes through an air gap into him and interacts with him. This magnetic flux is called the primary magnetic flux Fo. The magnetic flux of the second pole of the electric coil passes through the yoke of the electric machine, without participating in the interaction. This magnetic is Otok is called magnetic flux FR. (L. Piotrowski. Electrical machines, Gosenergoizdat 1958, str).

Technical result achieved during the implementation of the claimed invention, is to improve the efficiency of electrical machines due to the use of magnetic fluxes FR simultaneously with magnetic fluxes Fo in cooperation with the device for converting one form of energy into another. As we engage not previously used threads scattering FR, the value of the main magnetic fluxes Fo, the efficiency of electric cars will increase.

This technical result is achieved in that in an electric car device to create a magnetic field is a flange with concentric ribs on the wall, through radial slots in which a certain order of stacked ferromagnetic cores with electric coils. They should be laid in the grooves so that both poles of the electromagnets were open. The rigidity of ferromagnetic cores in the grooves provides cover with coupling pins (see figure 3). The tie rods figure 3 conventionally not shown. Flange with concentric ribs 10 and the presser cover 5 must be made of non-magnetic, dielectric material to eliminate the occurrence of eddy currents.

The device is to convert one form of energy to another should consist of two rotors, and one of the rotors is installed inside the device to create a magnetic field and interacts with its internal part and the second rotor covers the outer part of the device to create a magnetic field and interacts with the poles of the magnets facing out (see figure 2).

Figure 2 shows a diagram of the motion of magnetic flux of the stator, consisting of separate electrical coils with ferromagnetic cores. Figure 2 shows that the so-called main magnetic flux Fo passes through an air gap into an inner rotor 9 and interacts with it, and the so-called magnetic flux FR passes through the air gap in the outer rotor 3 and interacts with it.

Thus, in single-phase electric machine, in cooperation with the rotors involves both magnetic poles of the electromagnets, the device to create a magnetic field.

4 shows an electric machine for example, an induction motor, in which the inductor device to create a magnetic field used electric coils with ferromagnetic cores.

An electric machine includes: a shaft 1, the front flange 2, the external rotor winding (squirrel cage) 3, the machine body 4, the presser cover 5, the ferromagnetic core 6, the electrical coil 7, the bearing 8,the inner rotor winding (squirrel cage) 9, flange with concentric ribs on the wall 10.

The electrical coil 7, using the effect of phase shift, served single-phase alternating current, resulting in an electric car occurs rotating magnetic field. The magnetic flux of one of the poles of the electric coil 7 communicates with the external rotor 3, and the magnetic flux of the other pole of the electric coil 7 communicates with the inner rotor 9.

To reduce losses from eddy currents presser lid 5 and the flange with concentric ribs on the wall 10 would need to be manufactured from non-magnetic and dielectric materials. To improve the cooling of the machine and reduce weight in case 4, the flanges 2 and 10, the presser cover 5 and the external rotor 3 can do the vents.

Electric machine comprising a device for creating a magnetic field, where the inductor used electric coils with ferromagnetic cores and device for converting one form of energy into another, characterized in that the device for creating a magnetic field made a separate unit in the form of a flange with concentric ribs on the wall and press-on lid made of nonmagnetic and dielectric material, through the radial grooves made in the ribs, in a certain order C is defined ferromagnetic cores with electric coils, forming a pole electric machine, a device for converting one form of energy into another, consisting of two rotors, one rotor is installed inside the device to create a magnetic field and communicates with its interior, and the other rotor covers the outer part of the device to create a magnetic field - flange with concentric ribs on the wall and press-on lid interacts with its outer part.



 

Same patents:

FIELD: electricity.

SUBSTANCE: bar wave winding of stator of asynchronous motor is single-layer, and winding bars are solid; at that, height of bar hb, which is determined using the equations for damping factor kd and relative current displacement factor ξ, which are calculated at maximum frequency value f of supply voltage on condition that damping factor kd is at least by two times more than the value of the required control range of rotation frequency of asynchronous motor.

EFFECT: enlarging the control range of rotation frequency of asynchronous motor owing to increasing its maximum moment at increase of supply voltage frequency, as well as simplifying the design of bar wave winding owing to its single-layer design at one bar in each slot, which allows considerably reducing labour intensity for manufacture of asynchronous motor and reducing the sizes of front parts of winding.

2 cl, 3 dwg

FIELD: electricity.

SUBSTANCE: rotor of an asynchronous electric machine comprises a shaft, a ferromagnetic core fixed coaxially on the shaft - a magnetic conductor with an external surface in the form of a circular cylinder and an electric winding of "squirrel cage" type. At the same time according to this invention, the ferromagnetic core - magnetic conductor consists of longitudinal elements made of material having at least axial electroconductivity, besides, the longitudinal elements with the help of frontal conductors - links are electrically connected to each other only by their end parts, forming a winding of "squirrel cage" type.

EFFECT: considerable improvement of weight and dimension characteristics of an electric machine, reduced prime cost of its manufacturing, considerable reduction of teeth pulsations of the torque on the shaft of the asynchronous electric machine with a rotor made according to this invention.

10 cl, 2 dwg

FIELD: electricity.

SUBSTANCE: rotor of an asynchronous electric machine comprises a shaft, a ferromagnetic core fixed coaxially on the shaft - a magnetic conductor with an external surface in the form of a circular cylinder and an electric winding of "squirrel cage" type. At the same time according to this invention, the ferromagnetic core - magnetic conductor consists of longitudinal elements made of material having at least axial electroconductivity, besides, the longitudinal elements with the help of frontal conductors - links are electrically connected to each other only by their end parts, forming a winding of "squirrel cage" type.

EFFECT: considerable improvement of weight and dimension characteristics of an electric machine, reduced prime cost of its manufacturing, considerable reduction of teeth pulsations of the torque on the shaft of the asynchronous electric machine with a rotor made according to this invention.

10 cl, 2 dwg

FIELD: engines and pumps.

SUBSTANCE: in asynchronous motor the following is used: semi-open (up to 2.2 mm) rotor slots of special design without chamfer with transition at the height of 1 mm to wide part of the slot top; stator slots having upper part of arched design and maximum opening up to 4 mm on condition that number of pairs of poles 2p = 6 - 12 is chosen so that frequency of supply voltage is not lower than 4 Hz, with rigid matching of ratio of numbers of rotor slots of 66-130 and stator slots of 54 - 108 at the number of rotor slots more than number of stator slots by 20%; stator winding with number of slots per pole and phase is at least 2; magnetic system made from steel having high values of induction without connection to value of specific losses.

EFFECT: higher energy data and overload capacity of electric motor, including at its operation in generator mode.

2 dwg, 1 tbl

FIELD: electricity.

SUBSTANCE: asynchronous ac converter-fed motor with supply from DC source comprises an m-phase winding with even quantity of phases installed on a stator. All phase windings are arranged with a middle lead connected to one terminal of the supply source. End leads of n winding are connected to the second terminal of the supply source by means of controlled key elements, where n = 1, 3, 5, etc., at the same time end leads of (n + 1) winding are connected to the specified leads of n winding via diodes connected in accord relative to current in according sections of n winding. There is a capacitor connected in parallel to each section of (n + 1) winding.

EFFECT: simplified design by simplification of a circuit of an asynchronous motor connection to a DC source, increased reliability of this motor by reduction in quantity of switching key elements.

3 dwg

FIELD: electricity.

SUBSTANCE: electric motor includes rotor and stator with the main and auxiliary poles with pole tips and windings offset relative to each other through the half of pole pitch along poles of the main phase, as well as non-magnetic through gaps are made in stator yoke and pole tips, which are adjacent to them. Yoke is common for both systems of poles, and poles of auxiliary phase and stator yoke and pole tips, which are adjacent to them, are solid.

EFFECT: increasing electromagnetic starting moment of electric motor, which can provide reliable start-up at availability of increased load on shaft.

6 dwg

FIELD: electricity.

SUBSTANCE: low-speed asynchronous electric motor includes stator with multi-phase winding and rotor with interleaved core and short-circuited winding. Stator phases are made in the form of annular windings coaxial with rotor, each of which is located between two annular magnetic cores with teeth protruding in axial direction and which are opposite directed. At that, annular magnetic cores of the phase are offset relative to each other through π/z angle, and between them there arranged is toroidal magnetic core, and annular magnetic core of various phases are offset relative to each other through 2π/z·m angle, where z - the number of teeth of each annular magnetic core, and m - the number of phases.

EFFECT: simplifying the manufacturing procedure of the stator windings at simultaneous technically possible increase of the number of poles of low-speed asynchronous electric motor.

3 dwg

FIELD: electricity.

SUBSTANCE: low-speed asynchronous electric motor includes stator with multi-phase winding and rotor with interleaved core and short-circuited winding. Stator phases are made in the form of annular windings coaxial with rotor, each of which is located between two annular magnetic cores with teeth protruding in axial direction and which are opposite directed. At that, annular magnetic cores of the phase are offset relative to each other through π/z angle, and between them there arranged is toroidal magnetic core, and annular magnetic core of various phases are offset relative to each other through 2π/z·m angle, where z - the number of teeth of each annular magnetic core, and m - the number of phases.

EFFECT: simplifying the manufacturing procedure of the stator windings at simultaneous technically possible increase of the number of poles of low-speed asynchronous electric motor.

3 dwg

FIELD: electricity.

SUBSTANCE: in the proposed electric motor containing stator (2) with single-phase winding (6) and rotor (13) with squirrel cage (24), stator (2) has magnetic core (3) and magnetic core (4), the symmetry axes of which are parallel to each other and perpendicular to rotor (13) rotation axis; poles (5) of magnetic core (3) lie in its symmetry axis, magnetic core (4) is ring-shaped and has one pair of poles (11) on inner side of the ring; angle between symmetry axis of each pole (11) and symmetry axis of magnetic core (4) lies within 15° to 75°; on poles (11) there arranged is winding (12) in the form of coil wound on spiral; on the part of magnetic core (4), which is opposite to poles (11), there is winding (9) representing the coil wound on spiral; windings (9) and (12) are connected to each other so that the direction of their coiling is the same; rotor (13) is located between poles (5) and (11).

EFFECT: simplifying the design, improving operating reliability of electric motor, and reducing its operating costs.

2 cl, 3 dwg

FIELD: electricity.

SUBSTANCE: in the proposed electric motor containing stator (2) with single-phase winding (6) and rotor (13) with squirrel cage (24), stator (2) has magnetic core (3) and magnetic core (4), the symmetry axes of which are parallel to each other and perpendicular to rotor (13) rotation axis; poles (5) of magnetic core (3) lie in its symmetry axis, magnetic core (4) is ring-shaped and has one pair of poles (11) on inner side of the ring; angle between symmetry axis of each pole (11) and symmetry axis of magnetic core (4) lies within 15° to 75°; on poles (11) there arranged is winding (12) in the form of coil wound on spiral; on the part of magnetic core (4), which is opposite to poles (11), there is winding (9) representing the coil wound on spiral; windings (9) and (12) are connected to each other so that the direction of their coiling is the same; rotor (13) is located between poles (5) and (11).

EFFECT: simplifying the design, improving operating reliability of electric motor, and reducing its operating costs.

2 cl, 3 dwg

FIELD: electricity.

SUBSTANCE: electrical machine of double rotation includes stator, rotors installed so that they can rotate, the first blades that are connected to the first rotor and are rotated with the first rotor in the first direction, the second blades that are connected to the second rotor and are rotated with the second rotor in the second direction, shafts of rotors, and bearings that allow rotation of shafts, load-carrying housing; the first blades and the second blades are arranged outside the housing; stator is made in the form of individual teeth with winding without yoke, and rotors are made in the form of concentric sleeves from material with high magnetic permeability, which are located on outer and inner side of stator; on sleeves there fixed are radially magnetised constant magnets; polarity of neighbouring constant magnets alternates; on each tooth there located is concentric winding insulated from housing; number of poles of the first rotor is equal to the number of periods of the first fundamental harmonic of magnetomotive force of stator winding; number of poles of the second rotor is equal to the number of periods of the second fundamental harmonic of magnetomotive force of stator winding; rotors are not attached to each other and directions of their rotation are opposite.

EFFECT: improving reliability of electric machine of double rotation at simultaneous exclusion of transmission to its stator of reactive moment and providing the possibility of using air flows with low linear speeds for operation of this machine in generator mode.

9 cl, 3 dwg

FIELD: power industry.

SUBSTANCE: double-rotor tooth wind-driven generator includes stationary stator winding of solenoid type, as well as two rotors from non-magnetic material. Rotors are made in the form of discs and located coaxially. Equal even number of constant magnets is distributed uniformly on each rotor. Stationary stator winding of solenoid type is wound along axis of wind-driven generator and located between two cylindrical cores from ferromagnetic material. Core with larger diameter is fixed with its outer side in the housing. Both rotors are arranged on one shaft. Shaft is connected to wind wheel and has the possibility of being rotated in bearing supports fixed in the housing. Constant magnets are U-shaped, and their poles are located coaxially on each of the rotors and directed unipolar to each other. Each of constant magnets has the possibility of coaxial rotation with edges of cylindrical cores. Edges of cylindrical cores have tooth shape with number of teeth equal to number of constant magnets. Teeth of one edge of cylindrical cores are coaxial to slots of other edge of cylindrical cores. In each slot there located is connection strap from ferromagnetic material, which connects both cores.

EFFECT: increasing EMF induced in stator winding and simplifying the manufacturing procedure of stator winding.

4 dwg

FIELD: engines and pumps.

SUBSTANCE: engine includes stator with the first and the second armatures which form rotating magnetic field, inner rotor with the first and the second constant magnets, and outer rotor (13) located between stator and inner rotor. Outer rotor (13) includes rotor housing (31) that supports the first and the second induction magnetic poles (38L, 38R) made from feebly magnetic material so that they are inserted into rotor housing. Phase of the first induction magnetic pole (38L) coincides with phase of the second induction magnetic pole (38R). The first and the second induction magnetic poles are assembled in rotor housing (31) so that they are inserted into linear slots (31a) formed in rotor housing in (L) axis direction. Since the first and the second induction magnetic poles (38L, 38R) are aligned in (L) axis direction, outer rotor (13) has simple design and improved reliability. Besides, support and assembly of the first and the second induction magnetic poles (38L, 38R) in outer rotor (13) is simplified.

EFFECT: simpler structure of rotor supporting the induction magnetic poles, improving reliability of rotating electric machine.

16 cl, 39 dwg

FIELD: electricity.

SUBSTANCE: in proposed magnetoelectric generator the rotor of which is provided with constant magnets (3) and (4), and stator contains two parallel plates (5) and (6), between which annular windings (7) are arranged, according to this invention the rotor is made of two parallel discs (1) and (2) fixed on shaft, on each of which ring-shaped rows of constant magnets (3) and (4) are arranged on surfaces facing each other and located in each row at equal distance; polarity of constant magnets of each row alternates. At that, poles of constant magnets of one row face opposite poles of constant magnets of other row, and annular windings (7) of stator are made in the form of equal trapezoids the lateral sides (8) and (9) of which are located radially relative to rotor rotation axis, and sections (11) and (12) of annular windings (7) in bases of trapezoids are bent through an arc; annular windings (7) are inserted into each other in pairs. At that, distance ℓ between sections (11) and (12) of annular windings (7) in bases of trapezoids exceeds width b of ring-shaped row of constant magnets.

EFFECT: increasing efficiency coefficient and reducing starting moment of generator, and decreasing noise level during generator operation.

5 dwg

FIELD: electricity.

SUBSTANCE: electric generator is proposed for a wind-driven plant, comprising a stator, a rotor with a base and a cover, magnets and a flat coil. The magnets are installed on the cover and the base along a ring with a certain gap, and there is a flat coil installed between the magnets with a minimum gap, which is closed by circular plates at two sides. The flat coil is made of three windings located in radial gaps of a matrix. The matrix consists of an outer and an inner parts. Circular plates and the matrix are made of a dielectric non-magnetic material, and the base with the rotor cover are made of a magnetically conductive material. The magnets on the cover and the base are arranged as alternating with opposite poles, at the same time the magnets installed on the cover and the base opposite to each other also have the opposite poles.

EFFECT: simplified design of an electric generator for a wind-driven plant with simultaneous increase of its efficiency factor.

7 cl, 9 dwg

Electrical machine // 2400006

FIELD: electricity.

SUBSTANCE: electrical machine comprises stator with winding, inner rotor with output shaft installed in bearings, intermediate rotor covering inner rotor, on inner surface of intermediate rotor there are windings arranged, shaft of intermediate rotor is arranged as hollow, inside there is inner rotor shaft, besides bearings arranged on shafts of inner and intermediate rotors are arranged coaxially to their axis of rotation. On outer surface of intermediate rotor there are groups of permanent magnets arranged with alternating polarity, and generator winding of stator is multi-phased.

EFFECT: increased efficiency of device operation in wide range of inner rotor output shaft rotation speed change due to controlled redistribution of coaxial rotors rotation speeds, production of permanent output power with control of its rotation speed, and expansion of functional capabilities.

2 dwg

FIELD: electricity.

SUBSTANCE: asynchronous motor with hollow short-circuit rotor includes hollow rotor and external stator with core and winding, as well as additional rotor installed on the shaft in the zone restricted with stator with possibility of rotation irrespective of hollow rotor, made from ring-shaped magnet radially magnetised with the number of pairs of poles, which is equal to the number of pairs of poles of stator winding, on which there pressed is thin-wall sleeve from conducting material, and hollow rotor is made in the form of thin-wall shell from conducting material.

EFFECT: increasing power coefficient and efficiency of asynchronous motor with hollow rotor without deterioration of its dynamic characteristics.

3 cl, 2 dwg

Electrical machine // 2396671

FIELD: electricity.

SUBSTANCE: in electrical machine containing the device for creation of magnetic field and device for conversion of one kind of energy to the other, according to the invention, in device for creation of magnetic field (stator) the slots formed with magnetic conductor, which are through in axial direction, are also through in radial direction, and above external part of open slots which are through in radial direction there installed is external rotor enveloping the external part of stator (magnetic field creation device). Thus, electrical machine has inner rotor with which the main magnetic flow interacts, and outer rotor with which leakage flux interacts.

EFFECT: use of leakage flux in electric motors for creation of torque moment Mt, and in current generators for obtaining electric power, and as a result, increasing operating efficiency of electrical machines.

3 dwg

FIELD: electric engineering.

SUBSTANCE: proposed eccentroid electric machine comprises (dwg. 1-2) body (1) arranged with internal ring in the form of elliptic bearing race (2) from dielectric material, stator made in the form of three inertial elements (3), every of which is assembled from plates of electrotechnical steel, comprises axis (4) of rotation, is arranged in the form of rolls equipped with magnetic belts (5) at the ends, which consist of even number of semirings of various polarity. Axis (4) of rotation of each of inertial elements (3) is connected by two telescopic spring links (6) to dampers (7), installed symmetrically on both sides of rotor system, including propeller blades (8), on driving shaft (9) common for stator and rotor, which is arranged eccentrically relative to geometric axis of eccentroid electric machine. Body (1) is closed with two covers (10) at sides, on which at inner sides there are elliptic angle guide elements (11) installed to form together with elliptic bearing race (2) elliptic closed channel for movement of inertial elements (3) in it. Telescopic spring links are arranged relative to each other at the angle of 120°. Rotor system of eccentroid electric machine (dwg. 3-7) consists of two rotors: rotor (12) of free rotation and rotor (13) of forced rotation, rigidly arranged on driving shaft (9). Rotor (12) of free rotation comprises hollow shaft (14) arranged on sliding bearings (15) concentrically relative to both driving shaft and rotor (13) of forced rotation. Inside hollow shaft (14) of ferromagnetic material there is a system arranged from even number of permanent magnets (16) with alternating poles, and outside their rims (17) - magnetic belts (18) made also of even number of permanent magnets. Magnetic belts (5) and (18) of stator and rotor (12) of free rotation are arranged oppositely, and permanent magnets (16) have length comparable to length of rotor (13). Each of dampers (7) comprises hollow cylindrical perforated ring (21), rigidly fixed on driving shaft (9) and divided with internal radial partitions (23), between which compensation springs (24) are installed with thrust. Ends of telescopic spring links (6) arranged in dampers are arranged with hubs (22) rigidly installed on driving shaft (9), are installed in middle part of compensation springs and come out of dampers through holes in their cylindrical rings.

EFFECT: increased efficiency of electric machine operation by provision of ability to generate additional energy used for self-sufficiency of machine operation in rated mode and for supply to loads, and for production of traction used to provide for ability to use electric machine as propeller.

5 cl, 14 dwg

FIELD: electricity.

SUBSTANCE: invention can be used for electric drives, for example in electric propulsion systems of sea vessels, submarines, in traction drives of ground electrically propelled vehicles, hoisting devices, drives of pumps, fans, electric tools, etc., at increased requirements for level of torque pulsations, vibrations, noises and with the possibility of supplying power to motors from typical bridge converters which are batch-produced.

EFFECT: improving operating properties, reaching high efficiency and reliability, simplifying machine design as a whole, providing unique low-level vibration and noise characteristics of electric drive on the basis of the proposed non-contact synchronous machine owing to using stator representing non-ferromagnetic cylinder formed of copper windings of slotless design and filled with special compound with high thermal conductivity, which is placed between cylindrical surfaces of internal and external parts of the rotor made from ferromagnetic material.

1 dwg

FIELD: electricity.

SUBSTANCE: in accordance with this invention an improved stator (28) is proposed for rotary electric machines, with single-layer stator windings, comprising multiple previously formed coils (22) with identical angle pitch. The stator (28) comprises the first cylindrical surface, in which there are multiple slots (30) of windings displaced along the circumference, into which arms (24) of the previously formed coils (22) are inserted as arranged along the axis. Each of two arms (24) of the winding in each coil (22) are inserted into an appropriate slot (30) of the winding, besides, two slots (30) of the winding, where a coil (22) is inserted, form a pair of the winding slots. Improvement consists in the fact that slots (30) of the winding in each pair of the winding slots enter the stator (28) mainly in parallel directions. It means that arms (24) of the winding arranged along axis in every previously formed coil (22) may also be mainly parallel and do not require arrangement at the angle to each other. This makes it possible to simplify making the stator (28), since each previously formed coil (22) may be easily and simply inserted into a pair of parallel slots for the winding.

EFFECT: reduced time for winding of a stator in a rotary electric machine with simultaneous reduction of possible damage in the process of winding of previously formed coils.

16 cl, 4 dwg

Up!