Multipass accelerator-recuperator

FIELD: physics.

SUBSTANCE: multipass accelerator-recuperator with separate paths for accelerated and decelerated particles.

EFFECT: independent control over accelerated and decelerated particles, particularly, independent focusing and trajectory correction.

4 dwg

 

The invention relates to accelerator technology and can be used in the development of accelerators-recuperators. The most promising application is the creation of new sources of electromagnetic radiation.

Accelerators-recuperators are different from other types of accelerators that charged particles in them first accelerated (for example, in high frequency resonators)are then used, for example, for generating electromagnetic radiation, and then slow down again, returning energy in the accelerating system. One of the possible schemes of such accelerator-recuperator shown in figure 1. To reduce the size of the accelerating system (high-frequency resonators) can be used schemes with multiple passes of the beam through the accelerating system, as shown in figure 2. An example of such installation is the Novosibirsk free electron laser (N.G. Gavrilov et al., Status of the Novosibirsk high-power terahertz FEL. Nuclear instruments and methods in physics research. Sec. A. - 2007. - Vol.575, No 1/2. - P.54-57). This device was chosen as a prototype. The fundamental difference between the proposed device from the prototype - separate tracks for accelerated and decelerated particles. Using this system allows you to divide accelerated and decelerated particles that provides independent control of accelerated and decelerated particles is, in particular independent focusing and correction of the trajectory and length tracks.

The technical result of the invention it is possible to consider obtaining the required beam parameters.

Figure 1 schematically depicts singleturn accelerator-recuperator, figure 2 - diagram of the multi-accelerator-recuperator, figure 3 presents multi-accelerator-recuperator with two accelerating systems and electro-optical channels for accelerated and decelerated particles, figure 4 shows another possible geometric configuration of the accelerator-recuperator with separated electron-Opticheskie channels for accelerated and decelerated particles using four accelerating structures. In all the figures schematically: 1 - injector of low energy electrons, 2 - accelerating system, 3 - a device that uses electrons (for example, the undulator), 4 - absorber of slow electrons.

One of the embodiments of the device schematically represented in figure 3. The beam of electrons with energy E0from injector 1 falls into the first accelerating structure 2, where the energy of the particles increases by a certain amount ΔE, the system then turning magnets directs the beam to the second accelerating structure 2, where the energy of the particle is again increased by ΔE. Similarly, particles, passing it the once through both the accelerating structure gaining energy E0+5ΔE. After that, the beam is used in the device 3 and again enters the first accelerating structure. The length of the magnetic stripe, where the device 3, is selected so that the electron bunches pass through the accelerating structure in the retarding field. Then after passing through the first accelerating structure particles have energy E0+4ΔE. This energy differs from the energy E0+ΔE, E0+3ΔE and E0+5ΔE other particles at the outlet of the first accelerating structure. Therefore, slowing down the beam can be directed into the second accelerating structure on a separate electro-optical channel. It is easy to see that in the process of further deceleration energy of the decelerated particles at the outlet of the accelerating structure will be a significant (not less than ΔE) different from the energies of the particles in the other beams. This fact allows to use for each beam a separate electro-optical channel. After the last pass through the first accelerating structure beam with energy injection E0is sent to the absorber 4.

The use of a separate electron-optical channels enables you to independently adjust the length of the latter and to adjust the trajectory of all beams. In addition, the electron-optical system for accelerated and decelerated beams can vary greatly. This is important for the EP, if the device 3 is a free electron laser. In this case, electron optics at acceleration should provide optimal grouping and saving emittance, and when the slow - passing the exhaust beam with a large energy spread. Much easier and beam diagnostics.

There are other possible geometric configuration of the accelerator, using the same principle of the separation of fast and slow beam. A diagram of such a device with four linear accelerators are presented in figure 4.

Turn the accelerator-recuperator, characterized in that it contains a separate electro-optical channels for accelerated and decelerated particles.



 

Same patents:

FIELD: electricity.

SUBSTANCE: in high-voltage electrode of double stepped forming line, which contains two coaxial metal shells connected by means of end flange, and fixed in housing of double stepped forming line by means of discharge devices on one side and support dielectric elements on the other side, connection section of discharge devices to high-voltage electrode is made in the form of annular framework; openings are made in the framework and thin metal membranes through which discharge devices are connected to high-voltage electrode are fixed in them; at that, membranes are installed with possibility of their being broken away when discharge devices are destructed.

EFFECT: reduction of labour costs for repair of high-voltage electrode without removal of double stepped forming line of accelerator.

2 cl, 4 dwg

FIELD: physics, possible use in laboratory research, and also during development of new devices for medicine and engineering, where it is needed to eject electron or laser beams in impulse mode.

SUBSTANCE: the essence of method is in using the difference of spreading speeds of gas and electrons. Ejection channel is opened for the time, sufficient for flight of electrons, but insufficient for passage of gas molecules. This allows ejection of short electron beams of any power without loss of their energy with minimal flow of gas in direction of lesser pressure. Claimed device, which realizes the method, does not exhaust all of its capabilities. It is engineered for ejection of electrons from radioactive gas environment with pressure of 1Pa order into vacuum with pressure 10-5-10-6 Pa. Special feature of the method is that on its basis devices may be created for ejection of electron and laser beams without limitation of energy and distortion of their spectrum.

EFFECT: possible creation of devices, which, depending on conditions of operations in conjunction with various methods and means of vacuum and compressor engineering will ensure ejection of electron and laser beams of any energy into space with any pressure.

2 cl, 1 dwg

FIELD: technical physics, in particular, accelerators of light ions, possible use as generator of neutrons.

SUBSTANCE: accelerator of ions with magnetic isolation contains vacuumized cylindrical cover, made of dielectric material, provided with vacuum pump, magnetic coils positioned outside the cover, connected to impulse electric power source and creating axial magnetic field, anode and cathode, made in form of coaxial tubes, connected to high voltage source. Accelerator is provided with gas tank, adjustable by gas inlet valve and means for controlling gas pressure, accelerating inducers and additional magnetic coils, which are positioned on external surface of vacuum cover between inducers and are connected to impulse electric power sources. Device is also provided with inverse coaxial magnetrons with smooth anodes, each magnetron is connected to accelerator space via through slit, made in cathode of magnetron and lying in plane, passing through appropriate cover diameter in parallel to its generating line. Anode tube is made in form of part of cover, on vacuum surface of which axially-symmetrically and with provision of electric contact by their cathodes magnetrons are mounted, while their anodes are connected to impulse electric power sources.

EFFECT: decreased instability of ion current.

1 cl, 2 dwg

FIELD: nuclear engineering.

SUBSTANCE: proposed method for impact compression of material involves use of relativistic vacuum diode that has axisymmetrical vacuum chamber with electricity conducting walls, plasma cathode, and concentrating anode. Target in the form of axisymmetrical part is produced from condensed material and is used at least as part of concentrating anode. The latter is installed in relativistic vacuum diode in a spaced relation to plasma cathode and pulse discharge is applied from power supply to relativistic vacuum diode as electron beam is self-focused on concentrating anode surface. For the purpose use is made of axisymmetrical plasma cathode in the form of conducting rod and butt-end dielectric member coupled to the latter; surface area of conducting rod in dielectric member is larger than maximal cross-sectional area of concentrating anode. Concentrating anode is installed in a spaced relation to plasma cathode so that center of curvature of concentrating anode working surface is disposed within focal length of collectively self-focusing electron beam.

EFFECT: ability of compressing material to superdense condition.

22 cl, 17 dwg, 2 tbl

The invention relates to the field of accelerator technology and can be used for modeling micrometeorites and technogenic particles

The invention relates to accelerators, beams of charged particles, in particular electrons, and can be used in physics, chemistry and medicine

The invention relates to accelerator technology, and more particularly to accelerators used to produce a controlled thermonuclear fusion reaction

The invention relates to techniques of charged particle acceleration constant electric field, solves the problem of acceleration and simultaneous strong focusing of charged particles and can be used in electric direct action accelerators to obtain beams of charged particles, high intensity

The invention relates to accelerator technology, and more particularly to the accelerators used to produce a controlled thermonuclear fusion reaction

The invention relates to accelerator technology and can be used to generate a beam of electrons

FIELD: nuclear engineering.

SUBSTANCE: proposed method for impact compression of material involves use of relativistic vacuum diode that has axisymmetrical vacuum chamber with electricity conducting walls, plasma cathode, and concentrating anode. Target in the form of axisymmetrical part is produced from condensed material and is used at least as part of concentrating anode. The latter is installed in relativistic vacuum diode in a spaced relation to plasma cathode and pulse discharge is applied from power supply to relativistic vacuum diode as electron beam is self-focused on concentrating anode surface. For the purpose use is made of axisymmetrical plasma cathode in the form of conducting rod and butt-end dielectric member coupled to the latter; surface area of conducting rod in dielectric member is larger than maximal cross-sectional area of concentrating anode. Concentrating anode is installed in a spaced relation to plasma cathode so that center of curvature of concentrating anode working surface is disposed within focal length of collectively self-focusing electron beam.

EFFECT: ability of compressing material to superdense condition.

22 cl, 17 dwg, 2 tbl

FIELD: technical physics, in particular, accelerators of light ions, possible use as generator of neutrons.

SUBSTANCE: accelerator of ions with magnetic isolation contains vacuumized cylindrical cover, made of dielectric material, provided with vacuum pump, magnetic coils positioned outside the cover, connected to impulse electric power source and creating axial magnetic field, anode and cathode, made in form of coaxial tubes, connected to high voltage source. Accelerator is provided with gas tank, adjustable by gas inlet valve and means for controlling gas pressure, accelerating inducers and additional magnetic coils, which are positioned on external surface of vacuum cover between inducers and are connected to impulse electric power sources. Device is also provided with inverse coaxial magnetrons with smooth anodes, each magnetron is connected to accelerator space via through slit, made in cathode of magnetron and lying in plane, passing through appropriate cover diameter in parallel to its generating line. Anode tube is made in form of part of cover, on vacuum surface of which axially-symmetrically and with provision of electric contact by their cathodes magnetrons are mounted, while their anodes are connected to impulse electric power sources.

EFFECT: decreased instability of ion current.

1 cl, 2 dwg

FIELD: physics, possible use in laboratory research, and also during development of new devices for medicine and engineering, where it is needed to eject electron or laser beams in impulse mode.

SUBSTANCE: the essence of method is in using the difference of spreading speeds of gas and electrons. Ejection channel is opened for the time, sufficient for flight of electrons, but insufficient for passage of gas molecules. This allows ejection of short electron beams of any power without loss of their energy with minimal flow of gas in direction of lesser pressure. Claimed device, which realizes the method, does not exhaust all of its capabilities. It is engineered for ejection of electrons from radioactive gas environment with pressure of 1Pa order into vacuum with pressure 10-5-10-6 Pa. Special feature of the method is that on its basis devices may be created for ejection of electron and laser beams without limitation of energy and distortion of their spectrum.

EFFECT: possible creation of devices, which, depending on conditions of operations in conjunction with various methods and means of vacuum and compressor engineering will ensure ejection of electron and laser beams of any energy into space with any pressure.

2 cl, 1 dwg

FIELD: electricity.

SUBSTANCE: in high-voltage electrode of double stepped forming line, which contains two coaxial metal shells connected by means of end flange, and fixed in housing of double stepped forming line by means of discharge devices on one side and support dielectric elements on the other side, connection section of discharge devices to high-voltage electrode is made in the form of annular framework; openings are made in the framework and thin metal membranes through which discharge devices are connected to high-voltage electrode are fixed in them; at that, membranes are installed with possibility of their being broken away when discharge devices are destructed.

EFFECT: reduction of labour costs for repair of high-voltage electrode without removal of double stepped forming line of accelerator.

2 cl, 4 dwg

FIELD: physics.

SUBSTANCE: multipass accelerator-recuperator with separate paths for accelerated and decelerated particles.

EFFECT: independent control over accelerated and decelerated particles, particularly, independent focusing and trajectory correction.

4 dwg

FIELD: physics.

SUBSTANCE: radiant tube (4) for guiding a charged particle stream (10), having a hollow cylindrical isolation core (6) directly surrounding a beam-guiding hollow volume (8), the isolation core (6) being formed from a dielectrically acting carrier substrate (14) and an electrical conductor (16) held therein, and a metal housing (5) surrounding the isolation core (6), wherein the conductor (16) is divided into a plurality of conductor loops (20) completely encompassing the circumference of the isolation core (6) at different axial positions and galvanically connected to each other, wherein the conductor (16) in at least two spaced-apart points, particularly at the side of the ends, is galvanically connected to the housing (5), wherein metal layers are embedded in the carrier substrate (14), said metal layers being arranged one behind the other along the axis of the radiant tube (4) and inductively connected to each other through the electrical conductor (16).

EFFECT: reduced probability of breakdown.

6 cl, 1 dwg

FIELD: acceleration equipment.

SUBSTANCE: invention relates to acceleration engineering. Accelerator for charged particles comprises a set of capacitors with the first electrode, which can be brought to the first potential, with the second electrode, which is located concentrically to the first electrode and can be brought to the second potential differing from the first potential, and with at least one intermediate electrode, which is arranged concentrically between the first electrode and the second electrode and which can be brought to an intermediate potential located between the first potential and the second potential, a switching device, with which electrodes of the set of capacitors are connected and which is designed so that during operation of the switching device arranged concentrically to each other electrodes of the set of capacitors are brought to rising steps of potential, the first and the second accelerating channels formed by the first and respectively the second holes in electrodes of the set of capacitors, so that along the first or the second accelerating channel charged particles can be accelerated by the electrodes, a device affecting the accelerated beam of particles inside the set of capacitors to make a beam of particles generate the radiated photons.

EFFECT: technical result is provision of constant field intensity along the accelerating channel.

9 cl, 9 dwg

Up!