Extraction method of inert materials

FIELD: mining.

SUBSTANCE: first bottom is divided as to width into two parts. Drain is performed on one part. At that, river bank is protected by means of a berm against washway. Extraction of aggradational deposits is performed in opposite part of the first bottom. Works are carried out in two stages without violation of boundaries of coastal zone and safety berms during the pre-freshet period: mined rock is extracted at the first stage parallel to water drain; at the second stage, by means of inclined working (trench) at an angle close to 90° there knocked down is water drain and worked-out area of open-pit mine, water drain is shutoff downstream, and during the freshet period there performed is controlled aggradation of burdens of river drift to the worked-out area of open-pit mine.

EFFECT: enlarging production volumes on restricted surface areas without violation of boundaries of coastal zone owing to regeneration and recovery of stock.

1 ex, 1 tbl, 2 dwg

 

The invention relates to mining and can find application in the extraction of inert materials from the alluvial sediments in riverbeds upland rivers.

A known method of reclamation of quarries (A.S. USSR №1330313), which consists in forming by dumping refractory walls across career and longitudinal crosspieces with filling the space between them waste production. The disadvantages of this method include the substantial costs of remediation, do not guarantee full recovery of the ecological area of mining operations.

A well-known mining of alluvial deposits of the rivers. Haphazard mining of alluvial deposits in the river leads to the violation of the natural position of the bottom of the river and its banks. Although proven reserves may eventually recover, the banks collapse and the size of the floodplain increases.

The known method of placer developments (Konov V.I. methodology for the assessment of the ecological state of small rivers and protecting them from the influence of the mining industry: abstract of thesis... doctor. technology. Sciences. Moscow, 2008), selected as a prototype, including the preparation of land for future development (the cutting of trees and shrubs, removing the top layer of the soil, the drainage channel of the river from the borders of the placers by forming gutters, shafts and dams), prey species and warehousing e is after washing along the banks of the river, followed by the planting of trees and perennial grasses. Despite the fact that waste water is returned to the river, the violation of the boundaries of the coastal zone during the construction of drainage facilities (due to filtering) commits a water balance in the river. Therefore, the disadvantages of this method include the substantial costs of remediation, do not guarantee full recovery of the ecological area of mining operations.

The objective of the invention is the expansion of production in limited areas without violating the boundaries of the coastal zone due to the regeneration and recovery of reserves.

The task is solved in that the floodplain width is divided into two parts. On one side is a drain. And the river Bank from erosion protected by a berm. On the opposite side of the river floodplain is the mining of alluvial deposits. Without violating the boundaries of the coastal zone and berms security dobavochnyi period of work are in two stages: at the first stage, in parallel with the drain lead mining rock mass; in the second stage, the inclined generation (trench) at an angle close to 90°, knock drainage and goaf career with overlapping conduit downstream in the flood period, carry out a managed alluvium deposits of the river in a goaf career.

The direction of reclamation is regulated by the angle of the trench to the worked-out space. To provide the maximum of intensity of reclamation angle of the trench to the worked-out space should be close to 90°. The number of inclined openings (trenches) is determined by the length of a goaf.

Figure 1 presents the first phase of mining in the floodplain in dobavochnyi period.

1 - Bank of the river

2 - berm security

3 - protective dykes

4 - goaf

5 - drainage (current river).

Figure 2 presents the second phase of mining in the floodplain in dobavochnyi period.

1 - Bank of the river

2 - berm security

3 - protective dykes

4 - goaf

5 - drainage (current river)

6 - inclined generation (trench).

Examples of specific performance

The method is as follows, the floodplain width is divided into two parts (see figure 1 and figure 2). On one side is the drain - 5. And the river Bank from erosion protected by a berm - 2. On the opposite side of the river floodplain is the mining of alluvial deposits. Works are in dobavochnyi period in two stages: the first stage in parallel to the drain, without violating the boundaries of the coastal zone and berms security - 2, lead mining rock mass; in the second stage of the inclined output (pit 6) at an angle close to 90°, knock drainage and goaf quarry floor (downstream) drainage dam - 3.

In the flood period osushestvlyaetsya goaf - 4 alluvial sediments. The direction of reclamation is regulated by the angle of the trench to the worked-out space. To ensure the maximum intensity of the alluvium of the angle of the trench to the worked-out space should be close to 90°. The number of inclined openings (trenches) is determined by the length of a goaf.

The table presents the average characteristics of the material to be transported by the river Baksan in the winter and freshet periods 1988-1990, Given that the flood period lasts about three months, the annual volume transported by river material are more than 1 million tons.

It is well known that horizontal changes of the riverbed are due to the erosion of some banks and silting the opposite. Popping up the convex Bank, providing maximum resistance to movement of the river. The proposed technical solution, the direction of reclamation is regulated by the angle of the trench to the worked-out space. To ensure the maximum intensity of the alluvium of the angle of the trench to the worked-out space should be close to 90°.

Table
Description of material being transported by the river Baksan, 1990
IndicatorsEd. MEAs.Period
FloodWinter
1Water consumptionm3/h1253500132000
2The volume of transported rocks includingm3/h23518.5
For sizes
+200-500 mmm3/h14.20.2
+100-200 mmm3/h61.42.3
-100 mmm3/h159.416

If the width of the floodplain 230 m (middle reaches of the river Baksan): 35-40 m will take berm security, protecting the shore from erosion; 20-30 m dam between working the it career and conduit; 40-60 m - lines; 100-125 m - working area of the quarry. At the height of the ledge 10-12 m and the length of the working zone is about 250 m is provided by the annual output of 300 thousand m3or 750 thousand tons of rock. This will only be used about 50% of the features of the river (for example, Baksan river basin) reclamation and restoration of resources in the flood period. Cyclical work career, providing the stage of mining in dobavochnyi period, stage cleaning out space debris, spillage of fuel and lubricants (dobavochnyi period), filling out space career managed by alluvium sediments of the river (flood period), while retaining the contours and parameters solves the problem of extraction of inert materials without disturbing the ecological balance in the floodplain of the river.

The method of extraction of inert materials from the alluvial sediments in riverbeds upland rivers, including the diversion of water flow from the boundary extraction using drains and dams, characterized in that without violating the boundaries of the coastal zone and berms security dobavochnyi period of work are in two stages: the first stage in parallel with the drain lead mining rock mass; in the second stage of the inclined generation (trench) at an angle close to 90°, knock drainage and goaf career with overlapping conduit downstream and in Pavo the same period carry out a managed alluvium deposits of the river in a goaf career.



 

Same patents:

FIELD: mining.

SUBSTANCE: in method to form lane in winter period, including laying of heat insulation material onto water surface in the form of balls arranged as hollow with rigid plastic or silicon shell, besides, required quantity of balls per 1 m2 of water surface is determined using mathematical formula.

EFFECT: reduced environmental damage done to ambient water medium and prolongation of production season in winter period.

1 ex

FIELD: mining.

SUBSTANCE: method involves opening and arrangement of peats, processing of solid placer sections with dragging equipment and formation of dumps of waste sands. Development of placer in each section is performed after overburden operations and arrangement of peats in external dumps with bulldoser equipment with arrangement of waste sand dumps in worked out area at common border of two adjacent runs.

EFFECT: increasing development efficiency of clay sands.

6 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining and may be used for development of natural and technogenic high-clayey gravel deposits of minerals with an increased content of fine-grained and disperse-grained gold. The method involves deposit opening, digging a water supply trench slanted towards the deposit stratum drop and a water collection trench; the accumulator trench is dug between the area under development and the water collection trench. One mounts the suction device of the delivery hydrotransportation installation, mounts an ultrasonic installation relative to the accumulation trench, consistently intensifies filtration of water into the clay sands within the flooded area on the surface and by way of hydrodynamic activation and performs cutting the water saturated sand layers with the hydrodynamic equipment cutter elements, additional hydrodynamic initiation and ultrasonic impact on the hydromixture in the accumulation trench in the low frequencies band providing better effect of hydromixture particles displacement and ultrasound radiation intensity 5 W/cm2 or more.

EFFECT: improved efficiency of destruction and disintegration of deposit clay sands.

1 tbl, 2 dwg

FIELD: mining.

SUBSTANCE: invention relates to mining and may be used for development of natural and technogenic high-clayey gravel deposits of minerals with an increased content of fine-grained and disperse-grained gold. The method for softening and disintegration of shallow deposit clay sands involves deposit opening, digging a water supply trench slanted towards the deposit stratum drop and a water collection trench of a depth with a difference of bottom marks in the trenches from 1.5 to 3 m, filling the water supply trench with water with simultaneous water-filling of the deposit area under development to a depth sufficient for mounting and installation of equipment in a floating state and subsequent maintenance of the level for primary softening of clay sands by way of supply of water through an adjustable shutter, mounting the delivery hydrotransportation installation, process of natural filtration of water into the bulk. One mounts an ultrasonic installation and a mechanical installation. Successively one intensifies filtration of water into the compacted sand strata by way of ultrasonic impact on the sands along the surface of the site being developed by means of radiation in the interval of low ultrasonic frequencies ensuring maximum amplitude of displacement of compacted sand particles and radiation intensity parameters creating stress-strain tension, resistance to rupture and shear exceeding the normative data for deposit frozen sands strength. One performs intensification of disintegration of water-saturated sand surfaces with ultrasound at the same radiation frequency but reduced parametres of ultrasonic radiation intensity corresponding to the averaged equilibrium density and compressibility of water saturated sands. Then one performs hydrodynamic activation by way of mixing the hydromixture with an element of the mechanical installation and supply of the hydromixture with the help of the delivery hydrotransportation installation to the concentrating installation.

EFFECT: improved efficiency of destruction and disintegration of deposit clay sands.

2 dwg, 2 tbl

FIELD: mining engineering.

SUBSTANCE: method includes development mining, layerwise digging of sands on yard, storing and transportation for washing. Additionally yard is divided for sections of width, equal to length of scraper cut, layerwise digging is implemented by alternation of cuts throughout the site by maximal thin facings, and storing of sands is implemented palletise on adjacent by width of yard section, during predrying of sands in pile they are directed to washing. Then process is repeated on adjacent by length sections of yard, after what works are repeated on adjacent by width sections backwards.

EFFECT: predrying of clayey grounds.

2 cl, 1 dwg

FIELD: mining.

SUBSTANCE: invention is related to mining industry and may be used in overburden and getting operations in gravel deposits of minerals, with application of bulldozer-scraper aggregates. Method includes overburden operations, excavation and transportation of sands by bulldozer-scraper aggregate to enrichment equipment. Primary transportation of sands is carried out to specially prepared or developed space with arranged trench in bedrock along lower edge of bench with creation of slant, and secondary transportation of sands to enrichment equipment is done from slant of bench.

EFFECT: increased efficiency of getting equipment.

3 cl, 4 dwg

FIELD: mining.

SUBSTANCE: invention refers to open development of mineral placers, particularly to mining and concentration of gold containing placers in winter. The procedure consists in exposing works, in sand excavating and in sand transporting to a basin, in flushing and in dump piling. Also, in winter primary excavation and sand transporting are performed with preliminary piling sand on ice of the basin, while the secondary excavation and flushing are carried out in a warm season.

EFFECT: increased degree of disintegration of hard flushed clayish sand and reduced losses of valuable component.

2 cl, 2 dwg

FIELD: oil and gas industry.

SUBSTANCE: invention refers to development of mineral deposits, particularly clay placers, and can be implemented in mining industry. The method consists in striking developed placers, in their layer-specific excavation with parallel trenches leaving between-trenches massifs, in concentrating and in piling. Also between the first trench and the circuit of developed deposit an additional ditch is made, wherein water is supplied; when a successive trench is entered, each preceding trench is successively filled with water. When the last trench is driven, deposit is flooded; between trenches massifs are debugged by means of a drag or dredger; notably, debugging is performed from the first trench to the last one.

EFFECT: increased efficiency of clay placers development by means of increased degree of disintegration and extraction of valuable component at reduced technological losses.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: invention refers to development of deposits, particularly, gravel deposits, and can be implemented in mining industry. The method consists in stripping sand, in excavating and transporting sand to a hopper of a washing installation, in concentrating and in piling. Prior to transporting sand into the hopper of the washing installation, sand is piled in a trench laid in the center of the gravel deposit along the length of a production block at the depth below the level of the soil of the sand bed; the trench is filled with water. Also sands are piled in the trench below the water level, and their successive excavation is performed by the underwater method.

EFFECT: increased degree of disintegration of hard washed clayish sand and reduced process losses of valuable component with reduced cost for sand transporting.

2 dwg

FIELD: mining.

SUBSTANCE: invention refers to development of connate gravel deposits of solid minerals, particularly beach deposits of shelf. The method of development of connate water-flooded placers consists in preliminary concentration of useful component of sands in a lower part of the placer by means of excitation of elastic vibration and in successive stopped excavation. A tubular casing is introduced into the placer; the height of the casing exceeds the distance from the surface to the raft of the placer, excitation of elastic vibration in placer sands is performed by means of their transmission from surface via the tubular casing. Further a compressive force onto contacting surface, covering volume of empty material, is exerted from the side of interior surface of the casing. Then lower part of placer is hydraulically excavated by means of supply of washing water through nozzles arranged at walls of the tubular casing; pulp is withdrawn through soil draw-off apertures made at walls of the tubular casing between nozzles. Also after completion of excavation of lower part of the placer, pressure onto the surface, covering volume of empty material contacting with interior surface of the casing, is dropped to zero. When the cavity of the casing has been filled to a level corresponding to a ground level, the casing is pulled off.

EFFECT: increased selective extraction.

3 dwg

FIELD: mining industry.

SUBSTANCE: device has screw, having transporting spiral ribbon held on the shaft. Equipment is provided with U-shaped chute and perforated drum with armature in form of screw ribbon, having curvilinear shape in cross-section, arched in the direction of movement. Drum is mounted in upper portion of U-shaped chute. In its lower portion a screw is mounted.

EFFECT: higher productiveness.

3 dwg

FIELD: mining industry, particularly for open-cut steeply dipping or inclined deposit development.

SUBSTANCE: method involves excavating pit up to design depth reaching by sliced benches; moving the benches as ore deposit is developed; cutting ore and debris; loading thereof on conveyance means to move ore to ground surface, wherein as pit is deepened conveyer systems are used; on reaching the design pit depth deposit is divided into slices and the slices are developed with minimal ore losses in triangular zones with negligible interaction in peripheral face by developed slot raise technology usage; reinforcing slopes with anchors and metal mesh at deep horizons where berm cleaning is difficult; performing slice cutting though the full ore body thickness at design pit bottom and conveying the cut ore to surface by steeply inclined conveyers and combined transportation means. In the case of ore development in slices having lesser thickness below pit bottom steeply dipping and vertical side part are built, concrete wall and metal mesh adapted to hold wedge-like lumps in the presence of potential caving, wherein in this case mining equipment is used and ore cut from underground layer is crushed in crushing mills located on main loading and transportation horizons and delivered to ground surface by conveyer or skip shaft. Mined-out space is filled with rock refuse at terminal stage.

EFFECT: increased efficiency of mineral extraction, reduced cost of deposit development.

8 dwg, 1 ex

FIELD: mining industry, as well as hydraulic, road, agriculture and other building, particularly to perform open cast mining and other woks by rock loosening.

SUBSTANCE: method involves obtaining information concerning main and structural-and-strength rock properties on the base of estimation of data of primary and post-authorization prospecting, as well as production prospecting; detailed rock zoning to separate production blocks and unit blocks characterized by uniform rock at borders thereof; writing computer program; automatically loosing rock of each unit block by most effective method, namely by mechanical, pneumatic, blast drilling or physical one performed with the use of all-purpose mobile rig tools. Above rig includes computer system, device provided with one, two or three replaceable teeth, with plate-like metal pins and with hydraulic cylinders. The rig also has device adapted to create holes in unit block and wedge out thereof, drilling device and charging device, laser charge initiation system, local shelter with damping means, device for rock cutting by applying pressurized air and impacts to rock and auxiliary excavation device.

EFFECT: increased efficiency of rock preparation for further cutting and loading and for solid mineral field development as a whole.

1 dwg

FIELD: mining industry, particularly to develop watered placer deposits and technological mineral deposits under permanent negative temperatures of ambient air.

SUBSTANCE: method involves performing preparation and production works, mineral processing and refuse stacking operations. To implement above method dam is built around mining equipment and deposit to be developed prior to air temperature reduction to negative value; installing sled-mounted hangar having transparent heat insulated roof over the dam and performing all above mentioned works and operations inside the hangar.

EFFECT: increased efficiency of production and processing equipment.

2 cl, 1 ex

FIELD: mining industry, particularly for co-developing salt and platinum deposits.

SUBSTANCE: method involves detecting presence of platinum in non-soluble salt residue salt during salt deposit development; performing geological mapping of salt-bearing cavity and determining sand distribution in stratum above salt layer; drilling wells and bore pits and taking samples to determine platinum content; contouring sand deposits bearing platinum with concentration suitable for industrial development; cleaning surface; blocking out and excavating platinum-bearing sand; directing above sand to gravity separation plant; tying thereof with water in gravity separation plant to separate platinum therefrom.

EFFECT: increased complexity of deposit development.

FIELD: methods of surface mining, particularly for following natural stone treatment by covering or impregnating thereof with liquid or other flowable substances on surface.

SUBSTANCE: method involves gunning salt pit surface with waterproofing agent; covering salt pile surface with clay-and-salt mud layer in dry and hot season after salt pile hardening in at least 1.0-1.5 months after pile filling with salt. The clay-and-salt mud is sylvinite ore-dressing waste obtained from chemical factory. The clay-and-salt mud layer has 10-20 mm thickness and is formed by gunning salt pile surface with above mud material. The clay-and-salt mud is supplied into pneumatic pump receiver, wherein solid/liquid phase ratio is 1:2 - 1:3.

EFFECT: increased efficiency of salt pile waterproofing.

FIELD: agricultural; devices for treatment.

SUBSTANCE: the invention is pertaining to the field of clarification of water at the industrial development of the placer deposits with utilization of the wastes of the timber loggings and extraction of the finely dispersed gold from the water runoffs of the gold mining. In the bed of the diversion channel they form the firebreak out of the filtering material containing the wood sawdust mass subjected to the preliminary sorting at the vibration installation and having the ratio of the fractions from 1 to 5 mm up to the fraction from 5 up to 15 mm as 1:3 and packaged in the netted forms made out of the wire skeleton. After the water clarification the wood sawdust mass is subjected to dehydration by pressing and to drying and incineration for extraction of the fine fractions of gold. The technical result of the invention is the increased efficiency of the water clarification and extraction of gold.

EFFECT: the invention ensures the increased efficiency of the water clarification and extraction of gold.

1 dwg

FIELD: mining industry, possible use during extraction of natural and man-made gravel deposits of both mineral resources of high density (gold, platinum, etc), and valued minerals of low density.

SUBSTANCE: method for softening and disintegration of argillaceous sands of gravel deposits includes driving a water-feeding trench, driving a water-collecting trench in 80-100 meters along direction of fall of deposit bed in parallel to water-feeding trench, depth of water-collecting trench providing for difference of bottom levels in trenches 1,5-3 meters, filling water-feeding trench with water and recharging it to maintain constant water level by means of gate and spillway with raised spillway gate, building walling dam 1-1,5 meters high, limiting the part of deposit being processed in plan, with spillway, after that outputs of filtration flow into water-collecting trench are constructed which are fixed by wetting of upper slope for height of 1-2 meters, then spillway gate is lowered onto spillway spine, and that part of deposit is flooded with water for depth of 0,8-1,3 meters and this level is maintained for initial softening of argillaceous sands of gravel deposits, after that dredger plant is assembled, consisting of suck-in line with suction device, dredger itself and force sludge duct. At the end of force sludge duct, vortex generator is mounted together with hydrodynamic cavitator, due to which during launch of operation of dredger plant argillaceous sands of gravel deposits along the way from face and suction device of dredger to hydrodynamic cavitator are subjected to second stage of softening and disintegration, and in hydrodynamic cavitator - to third-stage final disintegration, and then are dispatched to dressing plant.

EFFECT: increased productiveness and extraction efficiency during extraction of natural and man-made gravel deposits due to efficient softening and disintegration of argillaceous sands of gravel deposits and release of valued components during hydro-transportation of sands to dressing equipment.

2 dwg

FIELD: mining industry.

SUBSTANCE: said geotechnological complex incorporates a trestle with a tumbling bucket, a tumbling module with a chute located inside the closed loop of trench for disintegrated rock accumulation. The chute is directed along the rock inflow. The tumbling bucket installation provides for possibility of linear and angular displacement in the vertical plane; the bucket has slots and L-shaped rippers.

EFFECT: improved efficiency of mining due to intensification of disintegration of rock with complex physical and mechanical properties during dredging and placer mining.

5 dwg

FIELD: mining industry.

SUBSTANCE: said complex is provided with a supported trestle and an ultrasonic and mechanical tumbling module. Rotatable ultrasonic radiation module is connected to movable carriage rim by means of a hub and sliding supports. The movable carriage is provided with a drive for moving it along the trestle cross beam and a drive for turning the ultrasonic radiation module around the movable carriage yoke axis. The rotatable ultrasonic radiation module has drives for moving the ultrasonic sources in the vertical plane, a dual drive for moving the ultrasonic sources in horizontal plane, sensors to determine the rock physical and mechanical state, and communication links with functional module of disintegration process automatic control system.

EFFECT: improved efficiency of mining due to intensification of disintegration of rock with complex physical and mechanical properties during dredging and placer mining.

2 dwg

Up!