Deformable thermally non-hardenable aluminium-based alloy

FIELD: metallurgy.

SUBSTANCE: Invention relates to metallurgy and may be sued in producing strained semi-finished products from thermally non-hardenable welded aluminium-based alloys used as structural and semiconductor material, primarily, in aerospace and nuclear engineering. Aluminium-base alloy comprises the following components in wt %: magnesium - 1.8-2.4, scandium - 0.2-0.4, zirconium - 0,1-0.2, cerium - 0.0001-0.005, iron - 0.01-0.15, silicon - 0.01-0.1, aluminium making the rest. Note here that iron-to-silicon content ratio may not be less than unity.

EFFECT: higher strength and conductivity, hence, reduced weight.

2 tbl, 1 ex

 

The present invention relates to the field of metallurgy and can be used in the production of deformed semi-finished products of thermally neurocinema alloys based on aluminum, is used as the structural and conductive material mainly in the aerospace and nuclear engineering.

Known thermally deformable neurocinema alloy based on aluminum the following chemical composition, wt.%:

Magnesium0,5-1,8
AluminumRest

(see Industrial aluminum alloys. Ref, ed. / Aliyev YEAR, Altman MB, Hambardzumyan S.M. and other 2nd ed., revised and enlarged extra - M.: metallurgy, 1984, p.44).

However, the existing alloy has low strength properties.

Known thermally deformable neurocinema alloy based on aluminum the following chemical composition, wt.%:

Magnesium1,8-2,8
Manganese0,2-0,6
AluminumRest

(see Industrial aluminum alloys. Ref, ed. / Aliyev YEAR, Altman M. the., Hambardzumyan S.M. and other 2nd ed., revised and enlarged extra - M.: metallurgy, 1984, p.44), the prototype.

The disadvantage of this alloy is low strength and low electrical conductivity and, consequently, increased weight and, accordingly, reduced the characteristics of weight devices.

Features thermally deformable neurocinema the base alloy of aluminum containing magnesium, scandium, zirconium, cerium, iron, and silicon in the following ratio, wt.%:

Magnesium1,8-2,4
Scandium0,2-0,4
Zirconia0,1-0,2
Cerium0,0001-0,005
Iron0,01-0,15
Siliconof 0.01-0.1
AluminumThe rest,

thus the ratio of iron content to the silicon content should not be less than one.

We offer alloy differs from the known fact that it further comprises scandium, zirconium, cerium, iron, and silicon and components are taken in the following ratio, wt.%:

<>
Magnesium1,8-2,4
Scandium0,2-0,4
Zirconia0,1-0,2
Cerium0,0001-0,005
Iron0,01-0,15
Siliconof 0.01-0.1
AluminumThe rest,

thus the ratio of iron content to the silicon content should not be less than one.

The technical result is increased strength and conductivity of the alloy, which will reduce the weight of the resulting constructions and accordingly to improve the performance of weight devices.

When the content ratio of the components in the proposed alloy in the decay of solid solution recorded during solidification of the ingot, the formation of secondary fine intermetallic compounds having a direct strengthening effect and impoverish solid solution, thereby increasing the conductivity of the matrix. This helps improve the strength and conductivity of the alloy, while maintaining its high q is precise resistance and good weldability, and, as a consequence, to reduce the weight of the resulting constructions, thereby improving characteristics of weight instruments and apparatus, which is especially important for aerospace and nuclear engineering.

Example

Received offer alloy mixture consisting of aluminum A99 motorway, magnesium MG, double ligatures aluminum-scandium, aluminium-zirconium, aluminium-cerium, aluminium-iron and silumin. The alloy was prepared in an electric melting furnace and method of semi-continuous casting cast billets with a diameter of 315 mm Chemical composition of the alloy is given in table 1.

The homogenized ingots, cut-to-length harvesting, mechanically processed, and then at 400°C extruded on a horizontal hydraulic press on the rod with a diameter of 110 mm Rod rolled at 390°C in the rolled billet with a diameter of 8 mm, which was annealed at 390°C, and then subjected to cold drawing to a diameter of 2 mm with five intermediate anneals. Thus obtained wire with a diameter of 2 mm was annealed at 250°C. hot-pressed rod with a diameter of 110 mm and annealed wire with a diameter of 2 mm were tested at room temperature with the determination of the tensile strength σinand conductivity γ. We also carried out tests of the alloy of the prototype, the chemical composition of which is given in table 1. The results of the tests are presented in tab is itzá 2.

Table 1
AlloyChemical composition, wt.%
MagnesiumManganeseScandiumZirconiaCeriumIronSiliconFe/SiAluminum
Offer2,08-0,320,120,00050,030,021,5Rest
The placeholder2,30,4------Rest
Note: the Fe/Si ratio of iron content to the silicon content.

tr>
Table 2
AlloyTensile strength, σin, MPaSpecific conductance, γ, MSM/m
Hot-pressed rodAnnealed wireHot-pressed rodAnnealed wire
Offer32024325,0to 25.3
The placeholder21018020,821,0

Thus, the proposed alloy has a tensile strength of 1.2-1.5 times higher and the conductivity of 1.15-1.25 times higher than the known alloy prototype. This will allow 10-30% reduction in the weight of structures and, accordingly, to improve the performance of weight instruments and apparatus, which is fundamentally important for the aerospace and nuclear engineering. In addition, the application of the proposed alloy in the form of wire blanks for subsequent drawing will improve the performance of the process of obtaining from it a thin wire for the odd reducing the number of breakages during wire drawing. The application of the proposed alloy in the form of welding wire for welding by melting the workpieces from a thermally deformable neurocinema dilute alloys on the basis of aluminum-magnesium will increase the strength and reliability of welded joints. Welded and non-welded design of the proposed alloy can be used in various corrosive environments such as sea water, oil, mineral oils, components of fuel aircraft engines, fertilizers, fluoride.

Deformable thermally neurocinema the base alloy of aluminum containing magnesium, characterized in that it further comprises scandium, zirconium, cerium, iron, and silicon in the following ratio, wt.%:

Magnesium1,8-2,4
Scandium0,2-0,4
Zirconia0,1-0,2
Cerium0,0001-0,005
Iron0,01-0,15
Siliconof 0.01-0.1
AluminumThe rest,

value agains the iron content to the silicon content not less than one.



 

Same patents:

FIELD: metallurgy.

SUBSTANCE: invention refers to deformed thermally hardened high-tensile aluminium alloys Al-Zn-Mg-Cu designed for fabrication of all kinds of deformed semi-finished products, including thin sheets used in aircraft and machine engineering and other branches of industry. Deformed alloy on base of aluminium and an item out of it contain the following components, wt %: zinc 2.5-4.0, magnesium 4.1-6.5, copper 0.2-1.0, iron to 0.25, silicon to 0.15, scandium 0.005-0.3, zirconium 0.005-0.25, nickel and/or cobalt to 0.1, titanium to 0.15, boron and/or carbon to 0.05, at least one element out of group: hafnium to 0.15, molybdenum to 0.15, cerium to 0.15, manganese to 0.5, chromium to 0.28, yttrium to 0.15, vanadium to 0.15, niobium to 0.15, aluminium and unavoidable impurities - the rest, also ratio of Mg contents to Zn contents is more or equal to 1.1.

EFFECT: production of alloy and items out of it possessing raised strength properties at simultaneous increased wear-resistance, reduced rate of crack growth, increased durability of welded connections and reduced density, which results in increased resource and reliability of items operation and in reduced weight of structures.

3 cl, 2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: alloy contains following components, wt %: magnesium 4.1-4.9, titanium 0.01-0.04, beryllium 0.0001-0.005, zirconium 0.05-0.12, scandium 0.17-0.30, cerium 0.0001-0.0009, manganese 0.19-0.35, chromium 0.01-0.05, group of elements, containing iron and silicon 0.06-0.25, aluminium is the rest, at that value of iron content relation to silicon content has to be not less than unity.

EFFECT: increased strength property, strength of welded connection at cryogenic temperatures, weight saving of welded fabrication, manufactured from suggested alloy.

2 tbl, 1 ex

FIELD: metallurgy; alloys.

SUBSTANCE: alloy and products out of this alloy contain the following elements, mas.% magnesium 0.6-1.2; silicon 0.6-1.2; manganese 0.3-1.0; iron 0.1-0.5; copper 0.05-1.0; titanium 0.005-0.05; at least one element out of the group: tin 0.6-1.0; bismuth 0.2-0.8; at least one element of the group: gallium 0.001-0.05; calcium 0.001-0.05; at least one element from the group: boron 0.0005-0.005; carbon 0.0001-0.005; aluminium - the rest.

EFFECT: there obtained an alloy and products out of it not containing lead and possessing upgraded machinability, high corrosion resistance and strength.

2 cl, 4 dwg, 2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: said utility invention relates to the manufacture of products of a rolled aluminium alloy highly resistant to damage. The method involves casting an ingot with a chemical composition selected from the group consisting of AA2000, AA5000, AA6000, and AA7000 alloys, homogenisation and/or heating of the ingot after casting, hot rolling of the ingot into a hot-rolled product and, optionally, cold rolling of the hot-rolled product into a cold-rolled product. After the hot rolling, the hot-rolled product is cooled from the hot-rolling mill output temperature (Tout) to 150°C or lower, at a controlled cooling rate decreasing within the set range according to a continuous cooling curve determined using the following expression: T(t)=50-(50-Tout)eα-t, where T(t) is the cooling temperature (°C) as a function of the cooling time (hours), t is the cooling time (hours), and α is a parameter determining the cooling rate, within a range of -0.09±0.05 (hr-1).

EFFECT: enhanced impact strength; resistance to growth of fatigue cracks, and corrosion resistance without strength deterioration.

19 cl, 7 tbl, 1 dwg, 2 ex

FIELD: nonferrous metallurgy.

SUBSTANCE: invention is intended for use in metallurgy, mechanical engineering, and aircraft industry, in particular for manufacturing honeycomb structures. Alloy is composed of, wt %: magnesium 8-10, manganese 0.1-0.15, zirconium 0.15-0.2, cobalt 0.05-0.2, boron 0.005-0.007, beryllium 0.001-0.02, iron 0.15-0.2, silicon 0.15-0.2, titanium 0.1-0.2, aluminum - the balance. Ingot for manufacturing structural foil is obtained by semicontinuous casting in rotary crystallizer at volumetric cooling 4-20°C/sec. Structural foil manufacturing process comprises homogenization, hot rolling, annealing, cold rolling followed by annealing in air atmosphere, second cold rolling followed by annealing, and final cold rolling.

EFFECT: increased strength of alloy at ambient and elevated temperatures and improved processability un rolling stage.

3 cl, 3 tbl

FIELD: metallurgy of aluminum-based alloys on base of Al-Mg-Mn system for manufacture of armored semi-finished products and articles for aviation and shipbuilding and other civil equipment.

SUBSTANCE: proposed alloy contains the following components, mass-%: magnesium, 4.2-6.5; manganese, 0.5-1.2; zinc, up to 0.2; chromium, up to 0.2; titanium, up to 0.15; silicon, up to 0.25; iron, up to 0.3; copper, up to 0.1; zirconium, 0.05-0.3 and at least one element selected from group containing: scandium, 0.05-0.3; beryllium, 0.0001-0.01; yttrium, 0.001-0.1; neodymium, 0.001-0.1; cerium, 0.001-0.1, the remainder being aluminum. Proposed alloy and articles made from it possesses high resistance to ballistic action of various projectiles due to optimal strength characteristics, optimal structure and plasticity characteristics.

EFFECT: high resistance to ballistic action of projectiles; enhanced corrosion resistance and weldability; reduced mass.

3 cl, 1 dwg, 3 tbl, 3 ex

FIELD: alloy metallurgy.

SUBSTANCE: invention relates to deformable, thermally strengthened, highly technologically effective, corrosion-resistant welding alloys based on the system Al-Mg-Si and articles made of thereof. The proposed alloy and article made of thereof comprise the following components, wt.-%: magnesium, 0.3-1.2; silicon, 0.3-1.7; manganese, 0.15-1.1; calcium, 0.05-0.; sodium, 0.0002-0.01, and at least one metal taken among the group comprising copper, iron, zirconium and chrome, 0.02-1.0, and aluminum, the balance. Invention provides the development of deformable alloy based on the system Al-Mg-Si and article made of this alloy that show enhanced technological effectiveness at cold stampings by extrusion and improved workability by cutting.

EFFECT: improved and valuable properties of alloy and article.

3 cl, 3 tbl, 1 ex

The invention relates to metallurgy, in particular to the production of composite materials with a matrix of aluminum alloy, reinforced with steel fibres, for the manufacture of airframe components, stringimage set, plating, etc

The invention relates to metal alloys, in particular thermally deformable neurocinema alloys intended for use in the form of deformed semi-finished products as a structural material

The invention relates to a method of manufacturing structural parts of aircraft alloy aluminum-magnesium-lithium

FIELD: alloy metallurgy.

SUBSTANCE: invention relates to deformable, thermally strengthened, highly technologically effective, corrosion-resistant welding alloys based on the system Al-Mg-Si and articles made of thereof. The proposed alloy and article made of thereof comprise the following components, wt.-%: magnesium, 0.3-1.2; silicon, 0.3-1.7; manganese, 0.15-1.1; calcium, 0.05-0.; sodium, 0.0002-0.01, and at least one metal taken among the group comprising copper, iron, zirconium and chrome, 0.02-1.0, and aluminum, the balance. Invention provides the development of deformable alloy based on the system Al-Mg-Si and article made of this alloy that show enhanced technological effectiveness at cold stampings by extrusion and improved workability by cutting.

EFFECT: improved and valuable properties of alloy and article.

3 cl, 3 tbl, 1 ex

FIELD: metallurgy of aluminum-based alloys on base of Al-Mg-Mn system for manufacture of armored semi-finished products and articles for aviation and shipbuilding and other civil equipment.

SUBSTANCE: proposed alloy contains the following components, mass-%: magnesium, 4.2-6.5; manganese, 0.5-1.2; zinc, up to 0.2; chromium, up to 0.2; titanium, up to 0.15; silicon, up to 0.25; iron, up to 0.3; copper, up to 0.1; zirconium, 0.05-0.3 and at least one element selected from group containing: scandium, 0.05-0.3; beryllium, 0.0001-0.01; yttrium, 0.001-0.1; neodymium, 0.001-0.1; cerium, 0.001-0.1, the remainder being aluminum. Proposed alloy and articles made from it possesses high resistance to ballistic action of various projectiles due to optimal strength characteristics, optimal structure and plasticity characteristics.

EFFECT: high resistance to ballistic action of projectiles; enhanced corrosion resistance and weldability; reduced mass.

3 cl, 1 dwg, 3 tbl, 3 ex

FIELD: nonferrous metallurgy.

SUBSTANCE: invention is intended for use in metallurgy, mechanical engineering, and aircraft industry, in particular for manufacturing honeycomb structures. Alloy is composed of, wt %: magnesium 8-10, manganese 0.1-0.15, zirconium 0.15-0.2, cobalt 0.05-0.2, boron 0.005-0.007, beryllium 0.001-0.02, iron 0.15-0.2, silicon 0.15-0.2, titanium 0.1-0.2, aluminum - the balance. Ingot for manufacturing structural foil is obtained by semicontinuous casting in rotary crystallizer at volumetric cooling 4-20°C/sec. Structural foil manufacturing process comprises homogenization, hot rolling, annealing, cold rolling followed by annealing in air atmosphere, second cold rolling followed by annealing, and final cold rolling.

EFFECT: increased strength of alloy at ambient and elevated temperatures and improved processability un rolling stage.

3 cl, 3 tbl

FIELD: metallurgy.

SUBSTANCE: said utility invention relates to the manufacture of products of a rolled aluminium alloy highly resistant to damage. The method involves casting an ingot with a chemical composition selected from the group consisting of AA2000, AA5000, AA6000, and AA7000 alloys, homogenisation and/or heating of the ingot after casting, hot rolling of the ingot into a hot-rolled product and, optionally, cold rolling of the hot-rolled product into a cold-rolled product. After the hot rolling, the hot-rolled product is cooled from the hot-rolling mill output temperature (Tout) to 150°C or lower, at a controlled cooling rate decreasing within the set range according to a continuous cooling curve determined using the following expression: T(t)=50-(50-Tout)eα-t, where T(t) is the cooling temperature (°C) as a function of the cooling time (hours), t is the cooling time (hours), and α is a parameter determining the cooling rate, within a range of -0.09±0.05 (hr-1).

EFFECT: enhanced impact strength; resistance to growth of fatigue cracks, and corrosion resistance without strength deterioration.

19 cl, 7 tbl, 1 dwg, 2 ex

FIELD: metallurgy; alloys.

SUBSTANCE: alloy and products out of this alloy contain the following elements, mas.% magnesium 0.6-1.2; silicon 0.6-1.2; manganese 0.3-1.0; iron 0.1-0.5; copper 0.05-1.0; titanium 0.005-0.05; at least one element out of the group: tin 0.6-1.0; bismuth 0.2-0.8; at least one element of the group: gallium 0.001-0.05; calcium 0.001-0.05; at least one element from the group: boron 0.0005-0.005; carbon 0.0001-0.005; aluminium - the rest.

EFFECT: there obtained an alloy and products out of it not containing lead and possessing upgraded machinability, high corrosion resistance and strength.

2 cl, 4 dwg, 2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: alloy contains following components, wt %: magnesium 4.1-4.9, titanium 0.01-0.04, beryllium 0.0001-0.005, zirconium 0.05-0.12, scandium 0.17-0.30, cerium 0.0001-0.0009, manganese 0.19-0.35, chromium 0.01-0.05, group of elements, containing iron and silicon 0.06-0.25, aluminium is the rest, at that value of iron content relation to silicon content has to be not less than unity.

EFFECT: increased strength property, strength of welded connection at cryogenic temperatures, weight saving of welded fabrication, manufactured from suggested alloy.

2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: invention refers to deformed thermally hardened high-tensile aluminium alloys Al-Zn-Mg-Cu designed for fabrication of all kinds of deformed semi-finished products, including thin sheets used in aircraft and machine engineering and other branches of industry. Deformed alloy on base of aluminium and an item out of it contain the following components, wt %: zinc 2.5-4.0, magnesium 4.1-6.5, copper 0.2-1.0, iron to 0.25, silicon to 0.15, scandium 0.005-0.3, zirconium 0.005-0.25, nickel and/or cobalt to 0.1, titanium to 0.15, boron and/or carbon to 0.05, at least one element out of group: hafnium to 0.15, molybdenum to 0.15, cerium to 0.15, manganese to 0.5, chromium to 0.28, yttrium to 0.15, vanadium to 0.15, niobium to 0.15, aluminium and unavoidable impurities - the rest, also ratio of Mg contents to Zn contents is more or equal to 1.1.

EFFECT: production of alloy and items out of it possessing raised strength properties at simultaneous increased wear-resistance, reduced rate of crack growth, increased durability of welded connections and reduced density, which results in increased resource and reliability of items operation and in reduced weight of structures.

3 cl, 2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: Invention relates to metallurgy and may be sued in producing strained semi-finished products from thermally non-hardenable welded aluminium-based alloys used as structural and semiconductor material, primarily, in aerospace and nuclear engineering. Aluminium-base alloy comprises the following components in wt %: magnesium - 1.8-2.4, scandium - 0.2-0.4, zirconium - 0,1-0.2, cerium - 0.0001-0.005, iron - 0.01-0.15, silicon - 0.01-0.1, aluminium making the rest. Note here that iron-to-silicon content ratio may not be less than unity.

EFFECT: higher strength and conductivity, hence, reduced weight.

2 tbl, 1 ex

FIELD: metallurgy.

SUBSTANCE: aluminium-based alloy contains the following, wt %: zinc - 6.35 - 8.0, magnesium - 0.5 - 2.5, copper - 0.8 -1.3, iron - 0.02 - 0.25, silicon - 0.01 - 0.20, zirconium - 0.07 - 0.20, manganese - 0.001 - 0.1, chrome - 0.001 - 0.05, titanium - 0.01 - 0.10, boron - 0.0002 -0.008, beryllium - 0.0001 - 0.05, at least one element from potassium, sodium, calcium group in quantity of 0.0001 - 0.01 each, aluminium is the rest; at total content of zinc, magnesium, copper within 8.5-11.0, and that of zirconium, manganese and chrome - within 0.1-0.35. Method involves loading and melting of charge components, flux treatment of molten metal, molten metal purification, further vacuum treatment of molten metal in mixer and casting of ingots; boron is added to molten metal in the form of Al-Ti-Be alloy which is distributed at least one hour before molten metal pouring to mixer along the whole surface area of mixer bottom; at that, mixer is pre-heated to temperature which is by 15-30°C more than molten metal temperature, and vacuum treatment of molten metal in mixer is performed at temperature of 695-720°C, during 45-90 minutes.

EFFECT: invention allows obtaining high-strength aluminium alloys with absence of primary intermetallic compounds, decreased content in them of non-metallic inclusions and dissolved gases, with stable properties and optimum size of grain on basis of standard furnace and process equipment.

2 cl, 3 tbl

FIELD: metallurgy.

SUBSTANCE: aluminium alloy contains the following components: from 4.5 to 6.5 wt % magnesium, from 1.0 to 3.0% wt % silicon, from 0.3 to 1.0% wt % manganese, from 0.02 to 0.3% wt % chromium, from 0.02 to 0.2% wt % titanium, from 0.02 to 0.2 wt % zirconium, from 0.0050 to 1.6% wt % of one or more rare-earth metals, max. 0.2% iron, and the rest is aluminium.

EFFECT: alloy has high strength properties and is intended for use in die casting and related methods.

8 cl, 1 tbl

Up!