Long blind drift ventilation method

FIELD: mining.

SUBSTANCE: long blind drift ventilation method involves drilling of the main and additional wells in a pillar between adjacent and blind drifts; development of the cavity connecting the main and additional wells; air supply via the main well from fan or other draft source from adjacent drift to blind one; air ejection via additional wells from adjacent drift to blind drift. For more qualitative mixture of active (inducing) and passive (induced) jets the created cavity has bigger length and is made in the form of cone - diffuser.

EFFECT: increasing the jet head, flow continuity and its hydrodynamic stability, increasing system ejection coefficient.

2 dwg

 

The invention relates to the field of mining industry and can be used for mine ventilation.

A known method of ventilation using concurrent production [A.A. Skochinsky, A.A. Mine ventilation [Text] / Ani, Webcameron): Whiteheat, 1969, s].

The disadvantage of this method of ventilation is the need to connect two parallel openings ventilation Bonami for airing one of the adjacent openings.

Known methods of ventilation dead-end part of the coaxial openings through the actions of local ventilation fans [doganov GV Airing dead-end workings of a large length [Text]/ Gviagra, Vframes, Iginition and others - M.: Nedra, 1968, p.26].

The disadvantages are the high cost of labour, tools and building materials for additional ventilation sbec between the parallel workings, low utilization rate of the jet of compressed air with the direct release of the pipeline along the breakthrough when trying to create a thrust.

The closest to the technical nature of the claimed method is a method of ventilation stub generation, in which the role of ventilation generation between two adjacent playing ejector made in the body of the array between adjacent expressed Adami [A.S. No. 840394, 1981, E21F 1/00].

The disadvantage of this ejector is inefficient mixing chamber (short, straight from quasispecies over active and passive jets), which does not provide a relatively complete transfer of energy and momentum from the entraining jet ejected to.

Objective of the claimed invention is an aerodynamic form the jet ejector (increasing pressure, alignment plot speed, betterinet currents and hydrodynamic resistance, increase of the ratio of the ejection system).

This reach is better (more complete) mixing the active (ejecting) and passive (ejected) jets in the longer mixing chamber with a diffuser (cone) of the internal space.

1 shows a longitudinal section of such ejector, which consists of a conical air cavity 1 for submission to the stub generation 2 formed of a jet of air due to the action of ejecting a jet supplied through the main bore 4, and the ejected air from adjacent generate 3 moving on additional wells 5.

Figure 2 - cross section along a-a in figure 1.

The method is as follows.

A stream of air from the main air duct or fan local ventilation, or from a special ejector, which is fixed in the vagina 4 through semarapura intake pipe-side connecting generation 3, or stream created any other way, served in the main bore 4 into the cavity expansion 1 (cavity expansion is simultaneously the mixing chamber), where the active stream loses when the expansion rate, but increases the static pressure to a value not reaching the atmospheric pressure, so the vacuum is created, through which the atmospheric air from generation 3 ejectives into the cavity 1 through the additional wells 5. At the exit of the cavity 1 in a ventilated generation 2 comes in the air with a flow rate of Q1=(n1+1)q, in which Q1/Q=(n1+1)/(n+1) times larger than in the prototype, since n1>n due to improved kinetics of mixing jets in diffusionism space, where n1n - factors ejection in the proposed method and the prototype, respectively.

Method of ventilation of a long dead-end production, including drilling in the pillar between adjacent and dead-end workings of the basic and additional wells, creating a cavity connecting the main and additional wells, air flow through the main bore from the fan or other source of thrust from adjacent production in a deadlock, the air ejection additional wells from adjacent production in a dead-end production, characterized in that for better mixing active (sectorwise) and passive (ejected) jets cavity create greater length and in the form of a cone - diffuser.



 

Same patents:

FIELD: mining.

SUBSTANCE: rock lining method involves erection of n-coal liner in filling mass from equal n-elements along helical spiral, installation of hollow guide template on bearing set prior to erection of filling mass, which repeats contours and clear sizes of development and the height of which is more than filling increment. At that, lining elements are laid on outer surface of template; after that filling mass is erected around liner; then template is lifted through one filling increment; sequence of operations is repeated till the liner erection is completed.

EFFECT: maintaining straightness of development liner during erection.

5 dwg

FIELD: mining.

SUBSTANCE: method for ventilation of development entries by way of slanting horizontal wells bored from the surface involves delivery of fresh air into the well due to general shaft depression and discharge of the outgoing air stream along main entries and the well. The shaft of the slanting horizontal well bored from the surface is positioned within a protective pillar between coupled development entries being arranged; discharge of the outgoing air stream from the development faces is performed through the breakthrough closest to the faces that intercepts the well shaft and with the help of a vacuum pump installed on the surface at the well mouth.

EFFECT: provision for independent ventilation of coupled development entries and extraction faces and reduced scope of full-faced entries being arranged.

2 dwg

FIELD: mining.

SUBSTANCE: invention refers to mining and can be implemented at development of mineral deposits with stowing mined space. Composition of stowage mixture containing milled granulated blast furnace slag, inert filler and water consists of the said acidic slag of fractions smaller, than 0.071 mm not less 90 wt %, as inert filler - wastes of concentration of wet magnet separation of ferrous quartzite containing fractions smaller, than 0.071 mm not less 90 wt %, additionally - super fluidising agent SP-1 at the following ratio of components, wt % said slag 22, said wastes 54.5, super fluidising agent SP-1 0.4 of slag contents, water - the rest.

EFFECT: raised strength, increased volumes of utilised anthropogenic wastes for considerable improvement of ecological medium.

1 ex, 2 tbl

Stowage mixture // 2396434

FIELD: mining.

SUBSTANCE: invention refers to mining and can be implemented at underground development of mineral deposits with stowing mined space. Stowage mixture contains, wt %: Portland cement or its milled clinker 1.4 - 13.68, milled zeolite rock 0.21-10.4, brine of 20÷105 g/l mineralisation, mainly of sodium chloride at temperature facilitating temperature of stowage mixture not below +15°C 14.9 - 26.96, fluidizing agent 0.01 - 0.3, filler - the rest. The invention is developed in dependant claims of the invention formula.

EFFECT: raised mobility and flowability of stowage mixtures, reduced shrinking at maintaining specified hardness, and reduced costs for nature conserving measures from negative effect of harmful salt saturated wastes of diamond extraction.

4 cl, 3 ex, 2 tbl

FIELD: mining.

SUBSTANCE: shaft pneumatic bridging comprises pneumatic shell, suspension unit, protective jacket, manometric and air-supply hoses, device for filling, control of excessive air pressure and its ejection, mount cord. At the same time pneumatic shell is arranged in the form of soft axisymmetric toroidal shell of rectangular section, inside of which there is sleeve arranged, and along its axis there is pipe mounted in with diametre that is less compared to sleeve. Besides pneumatic shell is separated into two equal parts by means of perforated web, upper end and its side surfaces are coated by loose-fitting meshy web with lap towards working zone of rise heading, upper end is made of synthetic high-module fibre of high strength.

EFFECT: improved operational reliability of shaft pneumatic bridging.

4 dwg

FIELD: mining.

SUBSTANCE: half-open course is arranged along chamber perimetre at the level of drilling crossdrift in interchamber pillars, and wooden lining is arranged in it as protruding with its dead part into stripped area of chamber. In discharge courses there are drain partitions installed, and hydraulic stowage finely dispersed material without binder is supplied through course into stripped chamber to the level of ventilation crossdrift. After drainage of water and setting of stowage massif from preserved half-open course along processed pillars there is a row of vertical and inclined wells drilled for the whole capacity of stowage massif, casing pipes are lowered from the surface of which into wells together with reinforcement rods, which protrude over the level of stowage massif. Afterwards the hardening solution is used to fill the following: at first, through wells - preserved half-open courses, then - the wells themselves, and lastly, upper part of chamber till its ceiling, which forms capping.

EFFECT: reduced consumption of binder.

5 dwg

FIELD: mining.

SUBSTANCE: fresh air is supplied into mining face due to general shaft depression along two courses that delineate extraction pillar. It is discharged along course maintained behind mining face. In zones of active gas release of approximate beds, air impermeable throughput brattices are erected to form gas draining chamber. Part of stripped area adjacent to the latter is zone of methane trapping. Flow of air-methane mixture is formed. One part of flow is drained along gas-draining course into outward line of extraction site. The other one is discharged from stripped area outside the limits of extraction site. Between mining face and zone of maximum gas release of developed bed an additional throughput brattice is installed. The other part of air-methane mix flow is pushed aside in the area of impact of throughput brattices of gas draining chamber in direction of developed bed unloading zone arrangement. Flow of air-methane mix pushed aside is captured in wells for degassing. They are drilled in advance to form gas-draining chamber from maintained course into zone of developed bed unloading. Mouths are arranged behind project area, where gas draining chamber throughput brattice is erected. Bottoms are arranged in zone of maximum gas release of developed bed. Additional throughput brattice is initially installed in course maintained behind mining face in area, where its vertical plane matches vertical plane passing through point, which is projection of bottom in the well nearest to mining face for degassing onto ground of stripped area, and line being perpendicular drawn from specified point to the limit between maintained course and stripped area. As mining face advances, it is displaced in direction of extraction pillar development.

EFFECT: increased efficiency of methane removal, provides for the possibility to create reserve for increased load at bottom.

4 cl, 7 dwg

FIELD: mining.

SUBSTANCE: facility consists of chute and auxiliary belt arranged under load bearing belt; said auxiliary belt has side edges projecting beyond borders of load bearing belt. Side edges of the auxiliary belt rest on horizontal damping rollers-supports at a section of load flow receipt; they rest on tilted re-loading rollers-supports at the section of re-loading. The facility is equipped with a frame with a vibrator; re-loading rollers-supports are rigidly fixed on the frame. By means of flexible elements the frame is installed on poles and can be vertically reinstalled.

EFFECT: reduced length and increased reliability.

2 cl, 4 dwg

Goaf stowing method // 2393355

FIELD: mining.

SUBSTANCE: method of goaf stowing during underground development of steeply dipping thick ore bodies involves bottom-upward excavation of inclined ore streaks 5 in horizontal layers up to 8 m wide with the inclination angle equal to angle of dip of ore body starting from the hanging side towards the lying side, ore breaking to the mine goaf of the bed, loading of the broken ore from the mine goaf, installation of insulating bulkheads on the bed flanks and filling of the mine goaf with hydraulic stowing mixture 2. Before the mine goaf is filled with hydraulic stowing mixture 2, there built near exposed surface of the adjacent inclined ore streak 6 is concrete retaining wall 1 with the thickness taken depending on the bed width and the specified strength of wall 1. After the rest part of the mine goaf is filled with hydraulic stowing mixture 2 and water is filtered, injection of hardening - cement-and-sand solution is performed to its upper part to the depth of 100…300 mm for movement of self-propelled machines along the filling surface 4.

EFFECT: invention will allow decreasing the flow rate of hardening stowing mixture owing to the construction of concrete retaining wall and reducing the prime cost of the mine production.

2 dwg

FIELD: mining.

SUBSTANCE: system includes pit shaft with air-sound channels, ventilation and noise silencer chambers and ventilation stall. Stall is attached to pit shaft by means of the pipeline piece built in the building located above the underground structure. Between ventilation and noise silencer chambers there installed is elastic diaphragm with an opening.

EFFECT: reducing noise level by means of multi-staged silencing.

1 dwg

FIELD: mining industry.

SUBSTANCE: pipeline has sections made in form of hermetically interconnected outer and inner covers, mounted with space relatively to each other, and main ventilator. On different ends of pipeline flow meter and additional ventilator are mounted, the latter having adjustable characteristics and being connected to inter-pipe space by branch pipe. In inner cover apertures are made placed along radius and along length of cover. Air comes from apertures to air channel and forms additional air flow near walls of inner cover, which lowers or heightens aerodynamic resistance of ventilation pipeline.

EFFECT: higher efficiency, higher safety, lesser costs.

2 dwg

FIELD: oil and gas extractive industry.

SUBSTANCE: method includes use of device providing for manufacturability of assemblage of casing and drilling columns and concurrent drilling by two columns, provided with independent drives, and drilling, by casing column, of non-stable rock solids performed with frequency no greater than one calculated from formula

where Vmec - mechanical drilling speed, m/min, Fr - friction forces against rotation, Ften - friction forces against linear displacement, R - casing column radius, m, α - angle between vectors of directions of linear and rotating movements.

EFFECT: higher effectiveness, higher productiveness, higher reliability.

2 cl, 5 dwg, 1 ex

FIELD: mining industry.

SUBSTANCE: method for extraction and underground use of coal includes cleaning extraction and dumping of coal, fixing and controlling ceiling and transporting coal along face to drift. On the drift, in moveable generator, coal is pulverized for intensive burning with use of jets in water boiler firebox, where high temperature of steam is achieved (about 1400 C°), enough for decomposition of water on oxygen and hydrogen. These are separated, then oxygen is fed back to jets, and hydrogen is outputted along pipes and hoses in drifts and shaft. Variants of underground generator for realization of this method are provided. Also provided is method for extraction of disturbed coal beds by short faces. It includes extraction and dumping of coal on face conveyor, fixing of ceiling behind combine, moving conveyor line and support sections in direction of cleaning face displacement, control of ceiling with destruction and partial filling. Extraction of coal is performed in short curvilinear faces by long stripes along bed, in straight drive without forwarding drifts, with preservation and reuse of ventilation and conveyor drifts, equipped with mounting manipulator robots, with fixing behind combine by automatically operating support deflectors without unloading and displacing sections in area of coal extraction. Extraction and transporting of coal is performed by fast one-drum combine and curvilinear reloading conveyor, supplying coal to drift conveyor or immediately to underground gas or energy generator placed immediately on drift. Also proposed is face scraper conveyor for realization of said method, wherein pans are made with step along front face profile, greater, than along back one, while forming common line curved towards face with constant curvature. Also proposed is a method for controlling complex for unmanned coal extraction.

EFFECT: higher efficiency, effectiveness, broader functional capabilities.

8 cl, 5 dwg

FIELD: gas, oil, oil refining and other industries.

SUBSTANCE: invention relates to building and operation of underground reservoir in stable rocks, for instance, soluble salt deposits. Method includes delivery of water and putting out brine along water feed and brine lifting pipes placed one inside the other, charging and storing of gas in underground reservoir. After brine lifting, reservoir is dried and then is filled up with alternating layers of absorbent and inert porous material, volume ratio 2:1, delivered along clearance between water feed and brine lifting pipes. Brine lifting pipe is perforated in lower part in height of reservoir and it is installed in lower part of reservoir. Difference between angles of repose of absorbent and inert material does not exceed 10 degrees. This done, reservoir is filled with gas delivered along perforated brine lifting pipe.

EFFECT: increased productive volume of reservoir owing to sorption of gas on surface of absorbent, reduced cost of gas storing.

1 dwg

FIELD: mining industry.

SUBSTANCE: invention can be used for transportation of rock in underground mines for reloading of rock from one conveyor to the other installed at one level. For this purpose device is used containing pair of flight conveyors, forced-draught and suction fans, air chamber with air inlet hole provided with cyclone installed over flight conveyor to be loaded. Air chamber is arranged between conveyors and is furnished with air collector made in form of screen with cells, housing and brushes from side of conveyors. Additional hole is made in bottom of air chamber to deliver air jet at angle to direction of material movement.

EFFECT: device of simple design providing effective and safe reloading of rock from one conveyor to the other installed at one level.

1 dwg

FIELD: mining industry.

SUBSTANCE: method includes use of screw-drilling machine for driving of several first ventilation shafts in ore body and driving several second shafts, while second and each second shaft crosses, at least, one matching first shaft, forming first support walls, supporting ceiling. First supporting ceilings consist of ore body zones between neighboring second shafts, each first support wall has portion of at least one first shaft, passing horizontally through it. Horizontal channels are formed, each of which is placed transversely to matching second shaft between appropriate portions of first shaft, formed in adjacent support walls, for forming of group of continuous ventilation shafts. Second shafts are filled for forming second supporting walls, supporting well ceiling, and first supporting walls are extracted. First ventilation shafts can be made parallel to each other. Second shafts may be directed perpendicularly relatively to first ventilation shafts. In ore body air-outlet and air-inlet ventilation mines can be formed, placed at distance from each other along horizontal line, while first or each first ventilation shaft passes through portion of ore body between air-inlet and air-outlet ventilation mines. Driving of second or each second shaft can be performed by cutting machine, or by drilling or explosive mining.

EFFECT: higher efficiency.

7 cl, 11 dwg

FIELD: mining industry.

SUBSTANCE: method includes partial filling of extracted space of side and central mains by filling stripes from lava extracting shafts. At center of semi-lava on the side of massive, wherein next extractive column will be cut, filling shaft is additionally driven, wherefrom full filling of space between central fill stripe and fill stripe on the side of massive is performed. Preparation of next extraction column is performed under protection of erected fill stripes.

EFFECT: higher safety, higher efficiency.

1 dwg

FIELD: mining industry.

SUBSTANCE: method includes erection of rows of main platforms along bed length in staggered order with length equal or divisible by step value for support displacement, and placing filling material thereon. Along length of main platforms between ceiling and bed soil post support is mounted, upon which filling material is fed. After that between main platforms additional platforms are erected with wedge supporting, and main platforms are rotated counter-clockwise towards pneumatic support and it is displaced for one drive step. During that filling material, while lowering, unwedges wedge support between ceiling and bed soil and forms artificial supports. After that additional platforms are rotated counter-clockwise towards pneumatic support. After movement of cleaning face for two drive steps operations for constructing artificial supports are repeated. Distance between main platforms along bed fall line are selected from mathematical expression.

EFFECT: higher efficiency.

2 dwg

Vibrating feeder // 2247068

FIELD: mining industry.

SUBSTANCE: invention relates to vibrating facilities and it can be used for letting out ore or other materials and their separation. Proposed vibrating feeder has resilient supports, working member consisting of charging and discharge parts and vibrating drive consisting of two shafts with unbalance weight and motors, one per each unbalance weight. Place of arrangement of vibrating drive is determined basing on the fact that line of connection of axles of unbalance weights is located in area limited by two straight lines square to direction of vibration, one of which passed through center of mass, and the other is located at a distance from center of mass of 1/10L to side of charging part of working member. Axle of unbalance weights are located at different sides from line of direction of vibration passing through center of mass at distance equal to not less than 1/8 where L is distance between resilient supports in horizontal direction.

EFFECT: improved stability of operation of vibrating feeder at unstable supply and impact loads on working member at discharging.

1 dwg

FIELD: mining industry.

SUBSTANCE: method includes preparation and well extraction of resources of chambers with partial backfill of extraction space. Blocks of upper level relatively to blocks of lower level are placed in staggered order, while blocks are made in form of a stretched upwards hexahedron. Resources of block within one hexahedron are separated on two chambers, one of which, placed along periphery of hexahedron, after extraction and removal of ore from it is filled by hardening backfill. Second order chamber is made of hexahedron-like shape, extracted and removed under protection from artificial block on all six sides of this chamber. Removal of ore from first order chambers is performed through one removal mine - end of level ort and cross-cut in lower portion of block and intermediate sub-level cross-cuts.

EFFECT: higher efficiency.

2 dwg

Up!