Impact ripper

FIELD: mining.

SUBSTANCE: impact ripper consists of base machine, of mounted frame 1, of hydro-cylinder and pneumatic hammer 3. Pneumatic hammer 3 contains a case with piston-die 5 and tooth 4 installed inside. The ripper is equipped with at least one beam 6 connected to mounted frame 1 by means of rotation axle 7 and balance weight 8. Also pneumatic hammer 3 and balance weight 8 are arranged on beam 6 and designed to travel along it.

EFFECT: increased efficiency of soil ripping and reduced dynamic loads affecting base machine.

3 dwg

 

The invention relates to the construction and mining and can be used in the development of rock, solid and frozen ground.

Known cultivator comprising a hammer with two shoulders articulated lever, the ends of which is equipped with Ripper teeth (see A.S. No. 574534, M CL ES 37/02, 1974).

However, this Ripper has a low efficiency in the development of soils, as tillage is carried out without using strength.

The closest technical solution of the invention is the Ripper, including basic machine mounted on a hinged frame air hammer with the shell internal cavity which is divided by the piston-striker on the front and rear cameras and bustle with the source of compressed air (see Zakharchuk B.Z. and other Attachments tractor equipment for the development of high-strength soils. M., "engineering", 1979, p.33-36).

The disadvantage of this device is the load on the hitch frame from the forces of impact and reducing the total efficiency of loosening.

The technical result of the invention is to improve the efficiency of the loosening of the soil by reducing the dynamic loads acting on the base machine, and transfer them into the zone of soil destruction.

The essence of the invention lies in the fact that the Ripper that includes the basic machine, ran the ing frame, the hydraulic cylinder and air hammer, comprising a housing installed inside the piston-hammer back and the tooth is equipped with a beam connected to the hinged frame with the axis of rotation, and balancing the load, while the air hammer and the balance weight is installed on the beam can travel, and the distance from the center of rotation of the beam to the axis of symmetry of the pneumatic hammer is determined from the conditions:

where L is the distance from the center of rotation of the beam to the axis of symmetry of the pneumatic hammer; Jo1- moment of inertia of the beam about an axis of rotation; JO2the moment of inertia of the balance weight relative to the axis of rotation; JC3the moment of inertia of the pneumatic hammer relative to the center of mass, m1- weight of beams; m2- the mass of the balance weight; lC1- the distance from the rotation axis to the center of mass of the beam; lC2- the distance from the axis of rotation of the beam to the center of mass of the balance weight.

To create hubs voltage in the closed volume of soil and exceptions centrifugal forces of inertia during operation of the cultivator is provided with an additional beam with the axis of rotation, balancing the load and the pneumatic hammer.

Supply Ripper beam with the axis of rotation, balancing the load and the pneumatic hammer, located at a distance offrom the axis, and the balance weight and the air hammer in which are mounted for movement relative to the beam, allows to minimize the transfer of dynamic loads on the base machine.

Supply Ripper additional beam with the axis of rotation, a pneumatic hammer and load balancing allows to compensate the centrifugal force of inertia produced by the rotation, and also create stress concentrators in the rock volume that is enclosed between the teeth air hammers and, thereby, to reduce the energy intensity of the process of destruction of the soil.

Collectively, these advantages of the proposed device in comparison with the prototype allows to increase the energy transfer dynamic loads in the soil, to reduce their impact on the underlying machine, reduce traction.

Figure 1 shows the Ripper percussion, General view. In figure 2, 3 is a top view of the working body (upper part of your body is conventionally not shown).

Ripper includes the basic machine with hinged frame 1, a cylinder 2, air hammers 3, containing the teeth 4 and the piston-Boyko 5, the beams 6, United axes 7 with hinged frame 1, the balancing loads 8. The beam 6 are guides 9.

The Ripper works as follows. When lowering the hinged frame 1 cylinder 2 is touching the teeth 4 of the surface of the soil. Static load acting on the teeth 4, leads to the compressed air in the cavity between the piston-striker 5 and the memory is 4 Ohm air hammers 3 (pistons-Boyko 5 in the initial moment of time was in the lower part of the casing air hammers 3). The force of the compressed air begins to move pistons-5 jaunty up. While the recoil forces act on the body of the air hammers 3, pressing them to the teeth 4. Further, the force transmitted to the ground, leading him to destruction. In a moment of quick movement of the body pneumatic hammer down 3, the inertial force of the pneumatic hammer beams 3 and 6 acts on the axis 7 connecting the beam with hinged frame 1. A similar situation arises in the case when the piston-head 5 when climbing up forces compressed air strikes on the upper part of the housing of the pneumatic hammer 3. But in this case, the reaction force will be transmitted to the axle 7 in the opposite direction. When moving the piston-striker 5 down force pressure of the compressed air acting on the body of the pneumatic hammer 3 and then to the beam 6, the axis 7, hinged to the frame 1. The accumulated kinetic energy at the moment of contact with the piston-striker 5 tooth 4 is transmitted into the ground. The sequential effects of dynamic loads on the axle 7 acts on the base machine and operator.

To exclude the dynamic component of the cutting forces of the ground on a hinged frame 1, on the beams 6 are installed balancing loads 8. When the position of the pneumatic hammer 3 relative to the axis of rotation is determined from the condition of dynamic equilibrium (see, for example, the book Yablonsky AA Course of theoretical mechanics. Part 2. The dynamics. A textbook for colleges. Ed. 5th, the DSS. - M.: Higher. school, 1977. - S. P.279-292). Assuming that the reaction at the point of attachment of the beam 6 is equal to zero, the equilibrium condition of forces and moments of forces, including the forces of inertia, can be represented by the following dependency:

where Jo- moment of inertia of rotating bodies about the axis of rotation (beams 6 - Jo1, balance weight 8 - Jo2and the pneumatic hammer - Jo3); ε is the angular acceleration of the beam 6; F is the force produced when the hydropercussion machine; L is the distance from the axis of rotation of the lever to the axis of symmetry of the pneumatic hammer 3; M is the mass of the rotating bodies (beams 6 - m1, balance weight 8 - m2and the pneumatic hammer 3 - m3); andwith- acceleration of the center of mass of the rotating phone

In accordance with theorem about the moments of inertia about a parallel axis (see, for example, the book Yablonsky AA Course of theoretical mechanics. Part 2. The dynamics. A textbook for colleges. Ed. 5-e, Corr. - M.: Higher. school, 1977. - S. Pp.93-94), the moment of inertia hydropercussion machine 3 is represented in the following form

where JC3the moment of inertia of the pneumatic hammer 3 about the center of mass.

The acceleration of the center of mass of the rotating bodies is represented in the following form andWith=εlWithwhere lWithdistance from the center of mass of the rotating bodies to the axis of rotation. ACC is accordance with theorem on the motion of the center of mass of the mechanical system [see, for example, the book Yablonsky AA Course of theoretical mechanics. Part 2. The dynamics. A textbook for colleges. Ed. 5-e, Corr. - M.: Higher. school, 1977. - S. S-1241,

where lC1, lC2, lC3- the distance from the rotation axis to the center of mass, respectively, of the beam 6, the balance weight 8 and the pneumatic hammer 3. The distance from the rotation axis to the center of mass of the pneumatic hammer 3 lC3=L. taking into account the obtained conversions, formulas (1) and (2) will take the form

Deciding together equations (3) and (4), we obtain

To exclude the centrifugal inertia forces arising from the rotation of the beam 6 with a pneumatic hammer 3 and balancing the load 8, and the development of soil in a confined space, mounted on the frame 1 installed additional beam 6 with a pneumatic hammer 3 and balancing the load 8. When working in cramped conditions one of the beams 6, together with the hammer 3 and the balancing 8 cargo can get out of here.

For the work of the Ripper in different ground conditions on the beam 6 is installed rails 9 on which can move air hammer 3 and the balance weight 8.

The application of the proposed Ripper allows you to increase the efficiency of loosening of the soil by reducing the tractive effort and dynamic loads, impacts the existing on-base machine, and send them to the zone of destruction of the soil.

Ripper percussion, including basic machine, hinged frame, cylinder and air hammer, comprising a housing installed inside the piston-hammer back and the tooth, characterized in that it has at least one beam connected to the hinged frame with the axis of rotation and balancing the load, while the air hammer and the balance weight is installed on the beam can travel, and the distance from the axis of rotation of the beam to the axis of symmetry of the pneumatic hammer is determined from the condition

where L is the distance from the axis of rotation of the beam to the axis of symmetry of the pneumatic hammer;
Jo1- moment of inertia of the beam about an axis of rotation;
Jo2the moment of inertia of the balance weight relative to the axis of rotation;
JC3the moment of inertia of the air hammer on the center of mass;
m1- weight of beams;
m2- the mass of the balance weight;
lC1- the distance from the rotation axis to the center of mass of the beam;
lC2- the distance from the axis of rotation of the beam to the center of mass of the balance weight.



 

Same patents:

Impact ripper // 2372447

FIELD: construction.

SUBSTANCE: invention is related to construction and mining, and may be used in development of hard rocks, firm and frozen soils. Impact ripper includes basic machine, equal-arm lever mounted on hinged frame with main and additional pneumatic hammers, cavities of which are separated with piston-strikers, and air-distributing system that contains air distributor 12 and air manifold. Air distributor is arranged in the form of body and has rotor 13, which rests with journals via bearings 14 and 15, installed in bodies of couplers 16 and body of air distributor. Inside rotor 13 there are two non-communicating holes 17, arranged along radial lines. On generatrix of rotor 13 there are grooves 18, which are connected to radial holes 17. In journals of rotor 13 there are channels 19, which connect holes 17 to bores and channels 21, arranged in bodies of couplers 16. One of rotor 13 journals is connected via flanged coupler 22 to electric motor 23.

EFFECT: improved efficiency of ripper operation, simplification and increase of operation reliability.

3 dwg

Vibration ripper // 2367747

FIELD: construction.

SUBSTANCE: invention concerns ground development by diggers and can be applied in mining, in construction for communication channel and line laying in hard and frozen soil and rock. Vibration ripper includes basic machine, parallelogram suspension, bearing beam 3, struts 5 with ripping cogs, vibration exciters. Articulated supports 8 are mounted at the top part of struts 5 and linked to resilient element 9. Resilient element is made in the form of pneumatic cylinder 9 including two equal chambers encasing force variation pistons 10 connected over stocks 11 and control rods 12 to top parts of struts 5. Each pneumatic cylinder chamber features volume variation pistons 13 connected by concentric stocks 14 over links 15 to hydraulic cylinders 16 controlling chamber volume and mounted at the ends or pneumatic cylinder 9.

EFFECT: enhanced efficiency of ground ripping.

3 dwg

FIELD: mining industry.

SUBSTANCE: invention can be used in working members of mining and earth-moving machines, particularly, in machines for digging hard and frozen soils. Proposed ripper point for breaking hard and frozen soils has shank with slot for fastening, and wedge-like working part formed by front end surface, two side surfaces and rear surface. Working part of front end surface located in place of intensive wear is reinforced along longitudinal axial line H-H by three of stress concentrators, being round elements projecting over front end working surface and dipped into body of point. Distance L between concentrators in row and distance 1 between rows is equal to triple value of their diameter.

EFFECT: reduced effort to applied to small soil, reduced power consumption for ripping, increased service life of ripper point.

3 dwg

FIELD: mechanical engineering.

SUBSTANCE: the bearing-rotary device in the engineer track vehicle is installed in the nose section of the chassis on the side of the tower of and positioned in the armored hull, it is fastened in cantilever in the tower and made in the form of a low-profile straight cylinder with a bottom shaped as a ball segment. An opening is made in the segment on the side of the tower for disposition of the drive of the bearing platform. The upper part of the portal is cylinder-shaped and provided with a boom rotation mechanism. An ogee is made on the retractable section of the boom, at the end of the projecting part positioned are ears with an axle installed on which are the excavator dipper and the tooth-ripper positioned under the excavator dipper for provision of separate or joint operation by formation of a gripping working member. The wall of the retractable section positioned on the opposite side of the ogee is additionally provided with a cargo-catching hook hanger for applying hoist slings to the cargo. Brackets are made on the lateral walls of the retractable section, fastened in whose ears are two short-range hydraulic cylinders linked with the tooth-ripper through a leverage with formation of a drive for turning and fixing the shaped cutouts for arrangement of the hydraulic cylinders of the tooth-ripper drive at a shift of the boom from the operating to traveling position are made in the lateral walls of the boom bearing section on the side of the retractable section.

EFFECT: expanded functional potentialities of the vehicle, enhanced protection of the bearing-rotary device.

6 cl, 12 dwg

FIELD: building equipment, particularly adapted to develop frozen and firm ground.

SUBSTANCE: device has tractor, executive tool formed as band with wedges secured thereto, executive tool frame, which connects the executive tool with tractor, and power source installed on executive tool frame. Device additionally comprises gantry connected to the tractor, vertical frame secured to gantry and cantledge lever. One lever end is pivotally connected to vertical frame. Central lever part is freely supported by executive tool frame through roller. Cantledge is installed on free lever end. Vibrator is rigidly secured inside executive tool frame, wherein the executive tool frame is three-dimensional and connected to vertical frame to perform rotation relative tractor in horizontal and vertical planes. Wedges are solid and cutting faces thereof are oriented along tractor travel direction axis. Band and cutting faces of the wedges form cutting disc having round continuous cutting edge.

EFFECT: increased capabilities due to possibility of ground cutting parameters regulation.

5 dwg

FIELD: mining and building, particularly for layered ground cutting by impulse compressed gas pressure application to the ground.

SUBSTANCE: device has load-bearing frame with vertical guiding shafts and cams connected thereto, gas-dynamic rippers with tubular rods. Connected to rods are screw heads with exhaust orifices, discharge bushes, working chambers, annular cases of gas-distribution units connected to vertical guiding shafts by means of brackets and enclosing vertical guiding shafts of sliding bushes. The device also has protective screen composed of several sections located at different levels along device height, movably connected to lower ends of vertical guiding shafts and eccentrically located relative central orifices adapted to receive tubular rods of gas-dynamic rippers formed in each protective screen section. Device also has supply system for -dynamic rippers. Upper parts of vertical guiding shafts may perform rotation through 0°-360° with fixation thereof and are installed in concentric orifices formed in load-bearing frame. Each cam has orifice for cam fixing in determined position. The orifices are eccentric to longitudinal vertical guiding shaft axis. Load-bearing frame also has concentric orifices formed with regard to each concentric orifice adapted for vertical guiding shaft installation. Concentric orifices of load-bearing frame are used for fixed cam connection with load-bearing frame. The connection is made as locking bolt installed in cam orifice and in one concentric orifice of loaf-bearing frame.

EFFECT: increased capacity.

2 cl, 6 dwg

FIELD: mining industry, particularly gas-dynamic devices for layered ground cutting.

SUBSTANCE: device has hollow rod body of central ripper kinematically connected to discharge bush coaxially thereto, screw bit body connected to discharge bush coaxially thereto, vertical guiding shafts to be secured to the base machine frame. Corbels are connected to guiding shafts so that corbels may perform longitudinal movement. Corbels have bushings for connecting thereof with guiding shafts. Device also has protective shield with central orifice for hollow rod body passage, valves to control delivery of compressed air and pipelines for compressed air supplying from source to gas distribution mechanism formed as the main operative chamber secured to upper end of hollow rod body and having hollow tail inserted in through central orifice of annular body rigidly connected to corbels. Annular body has central upper annular channel with radial channels and central lower annular channel with radial channels. Annular body may perform limited axial displacement inside discharge bush and may cooperate with lower end of valve rod body to establish communication between annular gap defined by rod body and central supply pipe, and exhaust orifices of discharge bush. Annular body comprises control chamber and central feeding pipe arranged into the control chamber, spring for valve pressing to lower end of rod body of central ripper. The device is provided with four additional gas-dynamic rippers with tails installed in through coaxial orifices formed in the annular body. Upper coaxial channel with radial channels and lower coaxial channel with radial orifices are formed around each through coaxial channel. One upper coaxial annular channel communicates through said valve with pipeline for compressed air supplying from the source and communicates with operative chamber by means of radial channels formed in annular body and through radial channels and inner cavity of the tail. Each other upper coaxial annular channel communicates with central upper annular channel through radial channels in annular body. One of the lower coaxial annular channels communicates with pipeline supplying for compressed air through the valve and with valve control chamber by means of radial channels made in annular body through annular groove created in the tail and through central supplying pipe to establish communication between annular gap defined by rod body of additional ripper and central supplying pipe, and exhaust orifices in discharge bush. Each other lower coaxial annular channel communicates with central lower annular channel through radial channels of annular body.

EFFECT: increased output.

3 cl, 6 dwg

Gas-dynamic ripper // 2244784

FIELD: mining industry; civil engineering.

SUBSTANCE: invention can be used in rippers of gas-dynamic action for loosening firm and frozen soils. Proposed gas-dynamic ripper has hollow rod housing installed coaxially and connected mechanically with housing of screw head with exhaust holes, vertically installed gui9de shaft for fastening on frame of base machine on which bracket is installed for longitudinal displacement with fitted-on bushings for connection with shaft, cocks to control delivery of compressed gas and pipelines to deliver compressed gas from supply source to gas distributor made in form of pneumatic accumulator with hollow shank secured on hollow rod housing, and ring housing with three ring channels in its wall rigidly connected with bracket, coaxially installed inner and outer supply pipes, exhaust control valve installed in screw head installed for limited axial displacement inside housing of screw head and interacting with seat for communicating ring clearance between seat and inner supply pipe with exhaust holes in housing of screw head are provided with control space and inner supply pipe arranged in control space, spring to press valve to seat, and piston for forced displacement of gas installed inside hollow rod housing for limited axial displacement. One of ring channels in wall of ring housing communicates through cock with pipeline to deliver compressed gas from supply source, and it communicates through radial channels made in ring housing through inner supply pipe with valve control space to communicate ring clearance between seat and inner supply pipe with exhaust holes in screw head housing. Space of pneumatic accumulator communicates with atmosphere and with supply source through compressed gas supply control cock, pipelines, ring channel with radial channels in wall of ring housing, radial channels and inner space in shank. Ring clearance between seat and inner supply pipe communicates with supply source through compressed gas supply cock, pipelines, ring channel with radial channels in wall of ring housing and outer supply pipe. Housing of pneumatic accumulator is made in form of hollow cylinder with lower and upper flanged parts provided with concentric holes for coaxial fastening of upper flanged part of pneumatic accumulator to flanged part of hollow shank, for coaxial fastening of lower flanged part of pneumatic accumulator to flanged part of hollow rod housing made at a distance from its upper end face equal to height of housing of pneumatic accumulator. Seat installed on upper end face of hollow rod housing for limiting upwards movement of forced gas displacement piston. Spring for limiting downward movement of forced gas displacement piston is installed on upper end face of seat to limit upward movement exhaust control valve. Outer supply pipe is installed in central hole of forced gas displacement piston.

EFFECT: increased efficiency.

3 dwg

Gas-dynamic ripper // 2236514
The invention relates to the field of mining and construction and can be used rippers gas-dynamic steps for ripping solid and frozen soils

The invention relates to impact tools that can be used in machines for the development of rock and frozen ground in the mining and construction industries

Gas-dynamic ripper // 2244784

FIELD: mining industry; civil engineering.

SUBSTANCE: invention can be used in rippers of gas-dynamic action for loosening firm and frozen soils. Proposed gas-dynamic ripper has hollow rod housing installed coaxially and connected mechanically with housing of screw head with exhaust holes, vertically installed gui9de shaft for fastening on frame of base machine on which bracket is installed for longitudinal displacement with fitted-on bushings for connection with shaft, cocks to control delivery of compressed gas and pipelines to deliver compressed gas from supply source to gas distributor made in form of pneumatic accumulator with hollow shank secured on hollow rod housing, and ring housing with three ring channels in its wall rigidly connected with bracket, coaxially installed inner and outer supply pipes, exhaust control valve installed in screw head installed for limited axial displacement inside housing of screw head and interacting with seat for communicating ring clearance between seat and inner supply pipe with exhaust holes in housing of screw head are provided with control space and inner supply pipe arranged in control space, spring to press valve to seat, and piston for forced displacement of gas installed inside hollow rod housing for limited axial displacement. One of ring channels in wall of ring housing communicates through cock with pipeline to deliver compressed gas from supply source, and it communicates through radial channels made in ring housing through inner supply pipe with valve control space to communicate ring clearance between seat and inner supply pipe with exhaust holes in screw head housing. Space of pneumatic accumulator communicates with atmosphere and with supply source through compressed gas supply control cock, pipelines, ring channel with radial channels in wall of ring housing, radial channels and inner space in shank. Ring clearance between seat and inner supply pipe communicates with supply source through compressed gas supply cock, pipelines, ring channel with radial channels in wall of ring housing and outer supply pipe. Housing of pneumatic accumulator is made in form of hollow cylinder with lower and upper flanged parts provided with concentric holes for coaxial fastening of upper flanged part of pneumatic accumulator to flanged part of hollow shank, for coaxial fastening of lower flanged part of pneumatic accumulator to flanged part of hollow rod housing made at a distance from its upper end face equal to height of housing of pneumatic accumulator. Seat installed on upper end face of hollow rod housing for limiting upwards movement of forced gas displacement piston. Spring for limiting downward movement of forced gas displacement piston is installed on upper end face of seat to limit upward movement exhaust control valve. Outer supply pipe is installed in central hole of forced gas displacement piston.

EFFECT: increased efficiency.

3 dwg

FIELD: mining industry, particularly gas-dynamic devices for layered ground cutting.

SUBSTANCE: device has hollow rod body of central ripper kinematically connected to discharge bush coaxially thereto, screw bit body connected to discharge bush coaxially thereto, vertical guiding shafts to be secured to the base machine frame. Corbels are connected to guiding shafts so that corbels may perform longitudinal movement. Corbels have bushings for connecting thereof with guiding shafts. Device also has protective shield with central orifice for hollow rod body passage, valves to control delivery of compressed air and pipelines for compressed air supplying from source to gas distribution mechanism formed as the main operative chamber secured to upper end of hollow rod body and having hollow tail inserted in through central orifice of annular body rigidly connected to corbels. Annular body has central upper annular channel with radial channels and central lower annular channel with radial channels. Annular body may perform limited axial displacement inside discharge bush and may cooperate with lower end of valve rod body to establish communication between annular gap defined by rod body and central supply pipe, and exhaust orifices of discharge bush. Annular body comprises control chamber and central feeding pipe arranged into the control chamber, spring for valve pressing to lower end of rod body of central ripper. The device is provided with four additional gas-dynamic rippers with tails installed in through coaxial orifices formed in the annular body. Upper coaxial channel with radial channels and lower coaxial channel with radial orifices are formed around each through coaxial channel. One upper coaxial annular channel communicates through said valve with pipeline for compressed air supplying from the source and communicates with operative chamber by means of radial channels formed in annular body and through radial channels and inner cavity of the tail. Each other upper coaxial annular channel communicates with central upper annular channel through radial channels in annular body. One of the lower coaxial annular channels communicates with pipeline supplying for compressed air through the valve and with valve control chamber by means of radial channels made in annular body through annular groove created in the tail and through central supplying pipe to establish communication between annular gap defined by rod body of additional ripper and central supplying pipe, and exhaust orifices in discharge bush. Each other lower coaxial annular channel communicates with central lower annular channel through radial channels of annular body.

EFFECT: increased output.

3 cl, 6 dwg

FIELD: mining and building, particularly for layered ground cutting by impulse compressed gas pressure application to the ground.

SUBSTANCE: device has load-bearing frame with vertical guiding shafts and cams connected thereto, gas-dynamic rippers with tubular rods. Connected to rods are screw heads with exhaust orifices, discharge bushes, working chambers, annular cases of gas-distribution units connected to vertical guiding shafts by means of brackets and enclosing vertical guiding shafts of sliding bushes. The device also has protective screen composed of several sections located at different levels along device height, movably connected to lower ends of vertical guiding shafts and eccentrically located relative central orifices adapted to receive tubular rods of gas-dynamic rippers formed in each protective screen section. Device also has supply system for -dynamic rippers. Upper parts of vertical guiding shafts may perform rotation through 0°-360° with fixation thereof and are installed in concentric orifices formed in load-bearing frame. Each cam has orifice for cam fixing in determined position. The orifices are eccentric to longitudinal vertical guiding shaft axis. Load-bearing frame also has concentric orifices formed with regard to each concentric orifice adapted for vertical guiding shaft installation. Concentric orifices of load-bearing frame are used for fixed cam connection with load-bearing frame. The connection is made as locking bolt installed in cam orifice and in one concentric orifice of loaf-bearing frame.

EFFECT: increased capacity.

2 cl, 6 dwg

FIELD: building equipment, particularly adapted to develop frozen and firm ground.

SUBSTANCE: device has tractor, executive tool formed as band with wedges secured thereto, executive tool frame, which connects the executive tool with tractor, and power source installed on executive tool frame. Device additionally comprises gantry connected to the tractor, vertical frame secured to gantry and cantledge lever. One lever end is pivotally connected to vertical frame. Central lever part is freely supported by executive tool frame through roller. Cantledge is installed on free lever end. Vibrator is rigidly secured inside executive tool frame, wherein the executive tool frame is three-dimensional and connected to vertical frame to perform rotation relative tractor in horizontal and vertical planes. Wedges are solid and cutting faces thereof are oriented along tractor travel direction axis. Band and cutting faces of the wedges form cutting disc having round continuous cutting edge.

EFFECT: increased capabilities due to possibility of ground cutting parameters regulation.

5 dwg

FIELD: mechanical engineering.

SUBSTANCE: the bearing-rotary device in the engineer track vehicle is installed in the nose section of the chassis on the side of the tower of and positioned in the armored hull, it is fastened in cantilever in the tower and made in the form of a low-profile straight cylinder with a bottom shaped as a ball segment. An opening is made in the segment on the side of the tower for disposition of the drive of the bearing platform. The upper part of the portal is cylinder-shaped and provided with a boom rotation mechanism. An ogee is made on the retractable section of the boom, at the end of the projecting part positioned are ears with an axle installed on which are the excavator dipper and the tooth-ripper positioned under the excavator dipper for provision of separate or joint operation by formation of a gripping working member. The wall of the retractable section positioned on the opposite side of the ogee is additionally provided with a cargo-catching hook hanger for applying hoist slings to the cargo. Brackets are made on the lateral walls of the retractable section, fastened in whose ears are two short-range hydraulic cylinders linked with the tooth-ripper through a leverage with formation of a drive for turning and fixing the shaped cutouts for arrangement of the hydraulic cylinders of the tooth-ripper drive at a shift of the boom from the operating to traveling position are made in the lateral walls of the boom bearing section on the side of the retractable section.

EFFECT: expanded functional potentialities of the vehicle, enhanced protection of the bearing-rotary device.

6 cl, 12 dwg

FIELD: mining industry.

SUBSTANCE: invention can be used in working members of mining and earth-moving machines, particularly, in machines for digging hard and frozen soils. Proposed ripper point for breaking hard and frozen soils has shank with slot for fastening, and wedge-like working part formed by front end surface, two side surfaces and rear surface. Working part of front end surface located in place of intensive wear is reinforced along longitudinal axial line H-H by three of stress concentrators, being round elements projecting over front end working surface and dipped into body of point. Distance L between concentrators in row and distance 1 between rows is equal to triple value of their diameter.

EFFECT: reduced effort to applied to small soil, reduced power consumption for ripping, increased service life of ripper point.

3 dwg

Vibration ripper // 2367747

FIELD: construction.

SUBSTANCE: invention concerns ground development by diggers and can be applied in mining, in construction for communication channel and line laying in hard and frozen soil and rock. Vibration ripper includes basic machine, parallelogram suspension, bearing beam 3, struts 5 with ripping cogs, vibration exciters. Articulated supports 8 are mounted at the top part of struts 5 and linked to resilient element 9. Resilient element is made in the form of pneumatic cylinder 9 including two equal chambers encasing force variation pistons 10 connected over stocks 11 and control rods 12 to top parts of struts 5. Each pneumatic cylinder chamber features volume variation pistons 13 connected by concentric stocks 14 over links 15 to hydraulic cylinders 16 controlling chamber volume and mounted at the ends or pneumatic cylinder 9.

EFFECT: enhanced efficiency of ground ripping.

3 dwg

Impact ripper // 2372447

FIELD: construction.

SUBSTANCE: invention is related to construction and mining, and may be used in development of hard rocks, firm and frozen soils. Impact ripper includes basic machine, equal-arm lever mounted on hinged frame with main and additional pneumatic hammers, cavities of which are separated with piston-strikers, and air-distributing system that contains air distributor 12 and air manifold. Air distributor is arranged in the form of body and has rotor 13, which rests with journals via bearings 14 and 15, installed in bodies of couplers 16 and body of air distributor. Inside rotor 13 there are two non-communicating holes 17, arranged along radial lines. On generatrix of rotor 13 there are grooves 18, which are connected to radial holes 17. In journals of rotor 13 there are channels 19, which connect holes 17 to bores and channels 21, arranged in bodies of couplers 16. One of rotor 13 journals is connected via flanged coupler 22 to electric motor 23.

EFFECT: improved efficiency of ripper operation, simplification and increase of operation reliability.

3 dwg

Impact ripper // 2380489

FIELD: mining.

SUBSTANCE: impact ripper consists of base machine, of mounted frame 1, of hydro-cylinder and pneumatic hammer 3. Pneumatic hammer 3 contains a case with piston-die 5 and tooth 4 installed inside. The ripper is equipped with at least one beam 6 connected to mounted frame 1 by means of rotation axle 7 and balance weight 8. Also pneumatic hammer 3 and balance weight 8 are arranged on beam 6 and designed to travel along it.

EFFECT: increased efficiency of soil ripping and reduced dynamic loads affecting base machine.

3 dwg

Improved ripper tip // 2434998

FIELD: mining.

SUBSTANCE: ripper tip includes replaceable tooth and attached seat in top cover of ripper tip. Ripper tooth is protected against rotation within the above top cover of ripper tip owing to locking heavy-shrink fitting so that the replaceable ripper tooth does not rotate when it is being used. Locking heavy-shrink fitting prevents penetration of solid particles into the gap between the walls of the above tooth and the above attached seat. Tooth has locking cone-shaped stock, and the above seat is provided with cone-shaped hole to be adjoined to the above locking cone-shaped stock. Tooth is cone-shaped and ends with a tip. Tip is made from high-strength material. Ripper tooth includes head section made at least partially from high-strength material. Top cover and ripper tooth form conjugation between seat and stock of ripper tooth having the corresponding shape; at that, seat and stock of ripper tooth have inner cone for formation of clamping cone between top cover and tooth; at that, ripper tooth is removed from cover in case of failure of clamping cone. Seat with inner cone forms some part of section for arrangement of ripper tooth in the cover, and the above stock of ripper tooth having the corresponding shape forms the part of ripper tooth. In stock of ripper tooth and section for arrangement of ripper tooth there made are through transverse channels the axial lines of which are aligned in case of fixture in the seat of stock of ripper tooth, which allows inserting the retaining pin. Head section of ripper tooth includes outward protruding arm enabling removal of ripper tooth. Section for arrangement of ripper tooth includes displacement hole that passes from external section of ripper tip to the area of base of the above seat, which allows displacing the tooth at available corresponding tool.

EFFECT: improving wear resistance and service life and economic effectiveness.

21 cl, 14 dwg

Up!