Method of preparing ethylbenzene hydroperoxide

FIELD: chemistry.

SUBSTANCE: invention relates to petrochemical industry and can be used in combined production of styrene and propylene oxide. Ethylbenzene hydroperoxide is obtained in accordance with the invention by oxidising ethylbenzene with atmospheric oxygen in a continuous reactor at atmospheric pressure in the presence of N-hydroxyphthalimide as a catalyst in amount of 0.5-3 wt % and temperature of the process of 125-130°C until achieving content of ethylbenzene hydroperoxide of 19.2%.

EFFECT: increased conversion of ethylbenzene and selectivity of the process.

1 cl, 1 ex

 

The invention relates to the petrochemical industry and can be used in the process of joint production of propylene oxide and styrene.

It is known that the hydroperoxides of alkylaromatic hydrocarbons obtained by oxidation of the corresponding hydrocarbon at an elevated temperature in the presence of alkaline additives and initiator of oxidation with subsequent isolation of the target product by known methods (ed. St. USSR №259884, CL SS 179/035 And, publ. 22.12.69 and bull. No. 3, 1979).

To improve the selectivity of the oxidation process is carried out in the presence of a catalyst is a chromium-Nickel steel containing chromium, Nickel, titanium, manganese, etc. When this catalyst can serve as a reactor or a nozzle in the form of rings or chips from the specified steel. The disadvantages of this method is the low rate of accumulation of oxidation products and a significant concentration of carboxylic acids in oxidate and, as a consequence, a significant loss of propylene oxide under epoxidation of propylene with ethylbenzene hydroperoxide.

A method of obtaining cumene ethylbenzene by liquid-phase catalytic oxidation of ethylbenzene at a high temperature oxygen-containing gas in the presence as catalyst of a mixture of compounds of metals of constant valency 1A and/or 2A group 3 and/or 4-year periods and the AC is authorized valence 7b and/or 8b groups of the 4th period of the periodic system, taken in total number per metal 0,0001-0,0031 wt.% when the total weight ratio of metal of constant valency metals of variable valence equal 300-1:1-100 [patent RU No. 2128647 C1, publ. 1998.03.10].

However, the method requires high energy costs, has a low conversion of ethylbenzene is not more than 8.1%, requires the use of catalysts consisting of a mixture of a large number of organic and inorganic components.

Closest to the present invention is a method of obtaining cumene ethylbenzene liquid-phase oxidation of ethylbenzene with oxygen in the presence of 0,00001-5.0 wt.% catalyst N-hydroxyphthalimide under pressure 6 To (kg/m) at a temperature of 40-120°C With pre-dissolving N-hydroxyphthalimide in ethylbenzene and the further introduction of sodium carbonate [patent RU No. 2186767 C2, publ. 2002.08.10].

However, the method has insufficient conversion (~17%) and the selectivity of the formation of ethylbenzene hydroperoxide (~87%). The technical purpose of this invention is to increase the conversion of ethylbenzene and selectivity of the formation of hydroperoxide.

This technical problem is solved using the method of producing cumene ethylbenzene by liquid-phase oxidation of ethylbenzene with oxygen at atmospheric pressure and a temperature of 125-130°C in the presence of the qualities of the catalyst N-hydroxyphthalimide in the amount of 0.5-3 wt.%. In these conditions it is possible to achieve conversion of ethylbenzene ~19,2% with selectivity for the formation of ethylbenzene hydroperoxide 90-94%.

The present invention is illustrated by the following example.

Example

The oxidation of ethylbenzene with oxygen is carried out on the laboratory bench installation, made of metal, is provided with back water and carbon dioxide refrigerators, dosing systems and control, at a temperature of 130°C and flow rate of air supply 250 h-1. In fed to the oxidation of ethylbenzene contains the catalyst N-hydroxyphthalimide in the amount of 3 wt.% the reaction is carried out for 3 hours. The resulting ethylbenzene hydroperoxide determined by iodometric titration, the composition of the organic part of oxidate - gas-liquid chromatography, acid - titration with an alcoholic solution of alkali with methylorange in the environment of acetone.

The conversion of ethylbenzene amounted to 22.4% with a selectivity of formation of ethylbenzene hydroperoxide was 94.2%.

Thus, in comparison with the prototype, the conversion of ethylbenzene is higher by 29%, the selectivity of the formation of cumene ethylbenzene above 8%.

The method of obtaining cumene ethylbenzene liquid-phase oxidation of ethylbenzene with oxygen at atmospheric pressure in the presence as catalyst of N-hydroxyphthalic the IDA in the amount of 0.5 to 3.0 wt.% with respect to ethylbenzene in the reactor continuous action, characterized in that the oxidation is carried out at a temperature of 125-130°C.



 

Same patents:

FIELD: pharmacology.

SUBSTANCE: invention concerns cyclic hydrocarbons, particularly obtainment of cyclohexyl-p-xylol hydroperoxide, which can serve as source for simultaneous xylenol and cyclohexanol obtainment and as emulsion polymerisation initiator for unsaturated hydrocarbons. Cyclohexyl-p-xylol hydroperoxide is obtained by cyclohexyl-p-xylol oxidation by air oxygen at atmospheric pressure in the presence of N-hydroxyphthalamide catalyst in amount of 0.5-2.5 wt % and process temperature of 110-150°C for 1-3 hours till cyclohexyl-p-xylol hydroperoxide content reaches 9.8%.

EFFECT: reduced duration of oxidation process, reduced power cost.

1 cl, 2 tbl, 2 ex

FIELD: chemistry.

SUBSTANCE: present invention refers to the method for preparation of cyclohexyl-o-xylol hydroperoxide which can be used as the source of combined obtaining of xylenols and cyclohexanone and as the initiator of emulsion polymerisation of unsaturated hydrocarbons. According to the invention cyclohexyl-o-xylol hydroperoxide is prepared by oxidation of cyclohexyl-o-xylol with air oxygen at temperature 100-150°C and atmospheric pressure in the presence of catalyst N-hydroxyphthalimide during 1-3 hrs. up to cyclohexyl-o-xylol hydroperoxide concentration 34%.

EFFECT: enhancing of the cyclohexyl-o-xylol hydroperoxide formation rate; decrease of the process time and energy consumption during oxidation process.

1 cl, 2 tbl, 2 ex

FIELD: chemistry.

SUBSTANCE: present invention refers to the method for preparation of cyclohexylisopropylbenzene hydroperoxide which can be used as initiator of unsaturated hydrocarbons emulsion polymerisation. According to the invention cyclohexylisopropylbenzene hydroperoxide is prepared by oxidation of cyclohexylisopropylbenzene with air oxygen at temperature 100-120°C and atmospheric pressure during 1-3 hrs in the presence of catalyst N-hydroxyphthalimide up to cyclohexylisopropylbenzene hydroperoxide concentration 64%.

EFFECT: enhancing of the cyclohexylisopropylbenzene hydroperoxide formation rate; decrease of the process time and energy consumption.

1 cl, 3 tbl, 2 ex

FIELD: chemistry.

SUBSTANCE: invention relates to method of obtaining cyclohexyltoluene hydroperoxide, which can serve as source of joint obtaining of cresols and cyclohexanon and as initiator of emulsion polymerisation of unsaturated hydrocarbons. According to claimed method obtaining of cyclohexyltoluene hydroperoxide is carried out by oxidation of cyclohexyltoluene with air oxygen at atmospheric pressure in presence of catalyst N-hydroxyphtalimide at temperature of process 110-140°C, during 2-3 hours until content of cyclohexyltoluene hydroperoxide is 22.2%.

EFFECT: increase of target product formation rate, reduction of process duration and reduction of power consumption for its carrying out.

1 cl, 3 tbl, 2 ex

FIELD: industrial organic synthesis.

SUBSTANCE: invention relates to production of alkylaryl hydroperoxides useful as starting material in production of propylene oxide and alkenylaryl. Process of invention comprises following stages: oxidation of alkylaryl compound to form reaction product containing alkylaryl hydroperoxide; contacting at least part of reaction product with basic aqueous solution; separation of hydrocarbon phase containing alkylaryl hydroperoxide from aqueous phase; containing at least part of above hydrocarbon phase with aqueous solution containing waste water, said aqueous solution containing less than 0.2% alkali metal and/or salt (determined as ratio of metal component to total amount of solution); and separation of hydrocarbon phase from aqueous phase. By bringing at least part of above hydrocarbon phase containing alkylaryl hydroperoxide into interaction with propylene and catalyst, alkylaryl hydroxide and propylene oxide are obtained. At least part of propylene oxide is then separated from alkylaryl hydroxide. Dehydration of at least part of alkylaryl hydroxide results in formation of alkenylaryl.

EFFECT: reduced amount of contaminating by-products in alkylaryl hydroperoxide preparation stage.

8 cl, 4 ex

The invention relates to a method of obtaining-generatingcapacity of ethylbenzene oxidation of the latter with oxygen in the presence of a ternary catalyst system comprising a bis-acetylacetonate Nickel, electron-donor complexing compound, for example an alkali metal stearate - sodium or lithium, N-organic-2, hexamethylphosphorotriamide and phenol concentration (0,5-3,0)10-3mol/l,-generatingcapacity is used to obtain propylene oxide, the world production of which is more than 106tons per year, and 44% of production based on the use of EVP as epoxidised agent

The invention relates to a method of producing hydroperoxides by oxidation of hydrocarbons oxygen-containing gas in the presence of certain compounds for the selective conversion of hydrocarbons to the corresponding hydroperoxide
The invention relates to the petrochemical industry and can be used in the process of joint production of propylene oxide and styrene
The invention relates to the petrochemical industry and can be used in the process of joint production of propylene oxide and styrene

The invention relates to a reactor unit to obtain gidroperekisi ethylbenzene oxidation of ethylbenzene oxygen-containing gas (oxygen) and can be used to obtain, respectively, of hydroperoxides of isobutane and isopentane

FIELD: chemistry.

SUBSTANCE: present invention relates to a method of continuous oxidation of saturated cyclic hydrocarbons using oxygen, into a mixture of hydroperoxide, alcohol and ketones. The method involves feeding into the lower part of a column and in parallel flow, a stream of oxidisable liquid hydrocarbon and a gas stream containing oxygen, and degassing the liquid phase in the upper part of the column by forming a gas dome and extraction of the degassed liquid phase. The gas containing oxygen is let into different compartments of the column, and into the dome and/or liquid phase at the level of the degassing zone, or directly above. A stream of non-oxidising gas with output sufficient for maintaining concentration of oxygen in the gas layer at the level of volume concentration, less than or equal to the upper limiting concentration of oxygen is supplied.

EFFECT: possibility of implementing a method with high selectivity on an explosion safe level.

9 cl, 1 dwg, 1 ex

FIELD: chemistry.

SUBSTANCE: invention concerns method of isopropylbenzene hydroperoxide (IPBHP) concentration, applied in phenol and acetone production by isopropylbenzene method. The claimed method involves feed of oxidate for rectification into a vessel with gas phase separation in top part or into condensers of rectification columns.

EFFECT: reduced load on columns, enhanced column efficiency, reduced loss of IPBHP with distillate, power saving.

3 cl, 2 dwg, 3 tbl, 3 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention relates to method for synthesis of alkylaryl peroxide-containing compound. Method involves the following steps: (a) oxidation of alkylaryl compound to yield the alkylaryl hydroperoxide-containing reaction substance; (b) treatment of at least part of the reaction substance containing alkylaryl hydroperoxide synthesized at the step (a) wherein this the reaction product comprises less 0.05% of sodium (by mass); (c) separation of product synthesized at the step (b) for hydrocarbon phase containing alkylaryl hydroperoxide and an aqueous phase; (d) repeating steps (b) and (c) by one or some time being optionally. Also, synthesis of alkylaryl hydroxide involves the additional treatment step (e) of at least part of hydrocarbon phase containing alkylaryl hydroperoxide synthesized at steps (c) or (d), olefin and a catalyst to yield alkylaryl hydroxide and oxirane compounds, and (f) separation of at least part of oxirane compound from alkylaryl hydroxide. Synthesis of alkenylaryl involves the additional step (g) of dehydration of at least part of alkylaryl hydroxide synthesized at step (f). Invention provides simplifying the technological process resulting to synthesis of improved substance containing alkylaryl hydroperoxide from which alkylaryl hydroxide is prepared followed by preparing alkenylaryl.

EFFECT: improved method of synthesis.

11 cl, 1 tbl, 6 ex

FIELD: industrial organic synthesis.

SUBSTANCE: invention relates to production of alkylaryl hydroperoxides useful as starting material in production of propylene oxide and alkenylaryl. Process of invention comprises following stages: oxidation of alkylaryl compound to form reaction product containing alkylaryl hydroperoxide; contacting at least part of reaction product with basic aqueous solution; separation of hydrocarbon phase containing alkylaryl hydroperoxide from aqueous phase; containing at least part of above hydrocarbon phase with aqueous solution containing waste water, said aqueous solution containing less than 0.2% alkali metal and/or salt (determined as ratio of metal component to total amount of solution); and separation of hydrocarbon phase from aqueous phase. By bringing at least part of above hydrocarbon phase containing alkylaryl hydroperoxide into interaction with propylene and catalyst, alkylaryl hydroxide and propylene oxide are obtained. At least part of propylene oxide is then separated from alkylaryl hydroxide. Dehydration of at least part of alkylaryl hydroxide results in formation of alkenylaryl.

EFFECT: reduced amount of contaminating by-products in alkylaryl hydroperoxide preparation stage.

8 cl, 4 ex

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention proposes a method for synthesis of organic hydroperoxide comprising the reduced amount of impurities. Method involves the following steps: (a) oxidation of organic compound to yield the reaction product comprising organic hydroperoxide; (b) contacting at least part of the reaction product comprising organic hydroperoxide with the basic aqueous solution; (c) separation of hydrocarbon phase containing organic hydroperoxide from an aqueous phase; (d) washing out at least part of the separated hydrocarbon phase containing organic hydroperoxide, and (e) contacting at least part of hydrocarbon phase containing organic hydroperoxide with a protective layer comprising a solid adsorbent wherein a solid adsorbent shows porosity 50-98% by volume. Except for, invention proposes a method for preparing oxirane compound from hydrocarbon phase obtained at the step (e) by the method described above and containing alkylaryl hydroperoxide. The presence of the protective layer reduces the pressure increment in the catalyst layer that is caused by the declined content of impurities in the raw comprising alkylaryl hydroperoxide.

EFFECT: improved preparing method.

7 cl, 2 ex

The invention relates to organic chemistry, namely the synthesis of the perforated deciphered specifically PERFLUORO-2-methyl-3-oxohexanoate used as an initiator radical copolymerization of fluorinated olefins

The invention relates to an improved method of decomposition of the hydroperoxide with the formation of a mixture containing the corresponding alcohol and ketone, comprising the stage of: a) adding water in the amount of 0.5-20% in the mixture containing the hydroperoxide; (b) the deletion of specified volume of water in such a way that together with water removes water-soluble impurities; C) removing the remaining water in such a way that the reaction mixture is not more than 2% of water; and (d) decomposition of the specified hydroperoxide by contacting the reaction mixture with a catalytic amount of a heterogeneous catalyst containing gold, supported on a carrier

The invention relates to a method of producing hydroperoxide tert-alkanes liquid-phase oxidation of hydrocarbons oxygen-containing gas

The invention relates to a technology for benzoyl peroxide interaction of benzoyl chloride with hydrogen peroxide in aqueous-alkaline medium under stirring and cooling

FIELD: organic chemistry, chemical technology.

SUBSTANCE: invention proposes a method for synthesis of organic hydroperoxide comprising the reduced amount of impurities. Method involves the following steps: (a) oxidation of organic compound to yield the reaction product comprising organic hydroperoxide; (b) contacting at least part of the reaction product comprising organic hydroperoxide with the basic aqueous solution; (c) separation of hydrocarbon phase containing organic hydroperoxide from an aqueous phase; (d) washing out at least part of the separated hydrocarbon phase containing organic hydroperoxide, and (e) contacting at least part of hydrocarbon phase containing organic hydroperoxide with a protective layer comprising a solid adsorbent wherein a solid adsorbent shows porosity 50-98% by volume. Except for, invention proposes a method for preparing oxirane compound from hydrocarbon phase obtained at the step (e) by the method described above and containing alkylaryl hydroperoxide. The presence of the protective layer reduces the pressure increment in the catalyst layer that is caused by the declined content of impurities in the raw comprising alkylaryl hydroperoxide.

EFFECT: improved preparing method.

7 cl, 2 ex

Up!