Rolling method of bodies of revolution

FIELD: metallurgy.

SUBSTANCE: invention is provided for optimisation of rolling process, reduction of power inputs, productivity gain, increasing of accuracy and quality of products. Method includes application of deformation effort to blank from tool with providing of incremental surfacing of specified shape and length. Creation of conditions, at which rolling efforts are closed to the structure of rolling mill, it is provided ensured by that blank is directed by motionless locating block by means of rolling roller in circular wedge, formed by clearance between locating block and rolling roller, and dimensional accuracy of product is directed, regulating clearance between roller and locating block.

EFFECT: optimisation of rolling process, reduction of power inputs, productivity gain, increasing of accuracy and quality of products.

2 cl, 2 dwg

 

The invention relates to the processing of metals by pressure and can be used in technological processes of manufacturing of rotary bodies of any shape by rolling.

There is a method of cross-wedge rolling, in which a cylindrical workpiece placed on the support rollers, apply a deformation force from the wedge tool, providing consistent formation of annular grooves of a given diameter and the formation of a neck of a given length (Cm. auth. the testimony of the Russian Federation No. 1773539 on CL VN 1/18, Appl. 25.07.1990,, publ. 07.11.1992, "a Method of obtaining speed shaft").

In the specified method at the initial moment of forming annular grooves applied to the workpiece external force - distance efforts are in the same plane, resulting in reduced dimensional accuracy.

The closest in technical essence and the achieved effect and is selected as the closest analogue is the way to rolling, in which the workpiece is applied to the deformation force from the wedge tool, providing consistent formation of the desired shape (profile) and a given length. In this case, the workpiece placed on the support rollers in rolling stands. The rollers impart translational and rotational about an axis movement relative to the fixed wedge tool (depending on the technology the technology the tool can set a counter movement relative to the rollers). In the rolling process the value of the reference reaction is brought to zero, essentially through unsupported rolling on the length of the roll out of the site.

However, the known method has limitations in the speed of movement of the workpiece associated with the likelihood of breakage of the tool used, and consequently poor performance. In addition, it does not provide sufficient accuracy Diametric sizes of rolled products.

The present invention is to reduce energy consumption, increase productivity, improve the accuracy and quality of the products.

The technical result that allows to solve the task is to optimize the rolling process by creating the conditions for closure of the rolling forces on the construction of a rolling mill, which allows for the implementation of rolling to overcome only the yield strength of the workpiece material.

This object is achieved in that in the known method of rolling bodies of revolution at which the workpiece is applied to the deformation force from the tool, providing consistent formation of a given shape and a given length, according to the invention the workpiece to be moved along a stationary bed using a rolling roller in a circular wedge formed by the gap between the cradle and procat the m roller.

As a tool, the proposed method is the combination of lodgement and the roller, the inner surface of which corresponds to the profile of rolled products.

The management of the accuracy of the Diametric size of the workpiece is performed by adjusting the gap between the roller and the lodgement.

The performance of the method of rolling bodies of revolution can be increased by increasing the rolling speed of the roller or a heated billet or use both at the same time.

Studies on patent and scientific and technical information sources show that the proposed method of rolling rotation bodies is unknown and should not be explicitly studied the prior art, i.e., meets the criterion of "novelty" and "inventive step".

The proposed method can be implemented on any enterprise that is specialized in this industry, so, this requires a known materials and standard equipment, widely produced by domestic and foreign industry. Thus, the inventive method of rolling bodies of rotation meets the criterion of "industrial applicability".

Moving the workpiece in a stationary bed using a rolling roller allows the rolling forces to close on the construction of a rolling mill that provides the OS is the implementation of rolling by overcoming only the yield strength of the workpiece material, regardless of hot or cold, which in turn reduces energy consumption and improves the performance of the method. In addition, such movement of the workpiece allows you to increase the rolling speed and to increase performance.

Limiting the magnitude of the effort deformation is determined only by the strength of the material rolled billets.

Moving the workpiece in a circular wedge formed by the gap between the fixed bed and the rolling roller, the method allows direct copying between the tool, which is a set of lodgement and the rolling roller and the workpiece, which in turn provides a more accurate, higher-quality products.

In addition, precision rolling inherent in the design of the tool used and in fact does not depend on the human factor. In this case, the tool can be controlled by any non-contact method (e.g., laser scanning). Thus, the accuracy and quality of the products obtained in the proposed method, the rolling bodies of rotation increases.

The ability to control the gap between the roller and the lodgement allows you to control the accuracy of the Diametric dimensions of the workpiece and, accordingly, improves the quality of the products obtained.

Thus the om, the set of essential features of the proposed method of rolling bodies of rotation enables to achieve the claimed technical result, namely the optimization of the rolling process by creating the conditions for closure of the rolling forces on the construction of a rolling mill, which allows for the implementation of rolling to overcome only the yield strength of the workpiece material and, therefore, to solve the problem, namely the reduction of energy consumption, increased productivity, increased accuracy and quality of the products obtained.

The method of rolling bodies of rotation is illustrated by drawings:

figure 1 - General view of the rolling mill,

figure 2 - a section C-C figure 1.

The mill contains: base - 1, the fixing of the cover - 2, the bearing housing - 3, the shaft 4 of the roller 5, the cradle 6, the fastening bolt 7 bearing 8, the spacer 9, the bolt 10 mounting cradle, pins 11 axial fixing roller 5, the key 12, the drive coupling 13, a washer 14, the bolt 15 of the fixing roller 5, the washer 16 mounting bearing, nuts 17, 18, the pin 19 of the fixing roller bearing, washer engraving 20, 21, the anchor bolt 22.

The proposed method of rolling rotation bodies is as follows.

Include drive through the coupling 13 is put into rotation of the rolling roller 5 via a shaft 4. The workpiece serves on lodgement 6 top rolling roller 5 it prokatyvajut throughout the lodgement 6. In the method of copying receive the finished product, which falls in the rollup tray (not shown).

Changing profile of products change the tool, i.e. change the lodgement 6 and the rolling roller 5, the inner surface of which defines a configuration obtained by rolling products.

It was experimentally determined that implementation of the proposed method of rolling bodies of revolution, which the applicant refers way all-around look-wedge rolling, allows to increase the rolling speed is more than a hundred times in comparison with the known method of cross-wedge rolling and thereby improve the performance of the method, which in turn provides dramatic power savings while obtaining a more accurate and high-quality products. In addition, it was found that dramatically increases the reliability of the mill by reducing cases of failure of the tool.

1. Method of rolling bodies of rotation, comprising the application to the workpiece efforts deformation from the instrument, ensuring sequential formation of defined shape and length, characterized in that the force is applied by moving the workpiece rolling roller in a stationary bed in a circular wedge formed by the gap between the cradle and the rolling roller.

2. The method according to claim 1, wherein f is d Diametric dimensions of the workpiece is controlled by regulating the gap between the roller and the lodgement.



 

Same patents:

FIELD: metallurgy.

SUBSTANCE: it is implemented shaping of barstock by means of redistribution of metal lengthways the axis of blank by means of movable across axis at least two wedge-like tools. At least to tone wedge-like tool it is applied additional reciprocative transportation on-the-mitre from 0° up to 90° to direction of its main motion with amplitude of oscillation from 0.002d up to 0.02d and frequency more than 10v/(πd), where: d - diametre of barstock, mm, v - rolling rate, mm/s.

EFFECT: fatigue strength of shafts is increased, surface smoothness of shafts is also increased, effort of operation drive of mill is reduced and power consumption is reduced.

3 dwg

FIELD: plastic working of metals, possibly manufacture of articles with elongated axis.

SUBSTANCE: method comprises steps of heating initial blank and feeding it to rolling stand; controlling temperature in position of starting deformation; shaping article in predetermined temperature range; then removing article from rolling stand and realizing additional temperature control of blank while deforming blank after removing it from rolling stand; measuring value real temperature range of rolling process; comparing said temperature range with predetermined value; then increasing and(or) decreasing heating temperature of initial blank in limit of predetermined temperature range depending upon change value of temperature range of rolling process. Deformation rate at cross-taper rolling is changed in range 28-150 m/min according to temperature change of rolled blank.

EFFECT: improved quality of rolled products, prevention of possibility of opening cavity in axial zone.

2 cl, 2 dwg

FIELD: plastic working of metals, possibly low-waste processes for shaping elongated forged pieces, mainly nut wrenches.

SUBSTANCE: method comprises steps of heating initial blank and subjecting it to preliminary profiling during transverse taper rolling by means of flat tool at temperature of semi-hot deforming; performing additional heating of rolled blank till temperature of hot deforming in combination with preliminary profiling; then forming forged piece in closed die set in hot deforming mode. Additional heating of rolled blank may be realized due to changing deformation modes of transverse taper rolling causing heating of blank.

EFFECT: lowered power consumption for heating blank, improved quality of forged pieces.

4 cl, 3 dwg, 1 ex

FIELD: rotary plastic working of materials, possibly forming beads on tubular blanks.

SUBSTANCE: method comprises steps of imparting rotation to blank; providing tool rotation simultaneously with rotation of blank due to contact friction between tool and blank; performing local deformation of blank by means of deforming tool in the form of roller; placing roller with possibility of rotation and turning relative to blank axis; performing deformation by two stages; at first stage performing rotary upsetting of blank by means of roller by angle 15 - 40° relative to blank axis for forming truncated cone; at second stage deforming truncated cone by positive motion of roller by angle 40 - 75° relative to blank axis.

EFFECT: enhanced mechanical properties of article, lowered cost of working blank for deforming, enlarged manufacturing possibilities of method.

4 dwg, 1 ex, 1 tbl

FIELD: metallurgy; pipe rolling.

SUBSTANCE: the invention is pertaining to the field of pipe rolling, in particular, to the methods of production of triblets of pilgrim-step rolling mills and may be used at production of triblets of pilgrim-step rolling mills for rolling of hot-rolled pipes of large and average diameters (273-550 mm). The method provides for casting of steel ingots, production of triblets out of the steel ingot blanks by, a heat treatment of the triblet ingot blanks, their mechanical working to obtain the finishing dimension with subsequent hardening by a roller run, casting of carbon steel ingots, application by surfacing on the ingot blanks of a heat-resistant and abrasive resistant layer and production of triblets out of the steel ingots by the pilgrim-step rolling, and in the process of operation after appearance of a net flame erosion cracks conduct a triblet multiple remachining till removal of the heat-resistant and abrasive resistant layer, application of a new heat-resistant and abrasive resistant layer by surfacing, machining till the finishing dimension and hardening by a roller running and determination of the thickness of the heat-resistant and abrasive resistant layer from the following equation Δ = A*µ* (l÷D/S*K), where: A - is the minimal thickness of the surfacing layer after the final mechanical working of a triblet and equaled to 10 mm; D - the maximal diameter of the pipes rolled on the given triblet, mm; S - the minimal wall thickness of the pipes rolled on the given triblet, mm; µ - a reduction ratio at rolling of ingots into the hollow triblet blanks and K - a coefficient equal to 0.02. The invention ensures production of triblets of pilgrim-step rolling mills for rolling of hot-rolled pipes of large and average diameters, usage as the basis of the triblet ingot blanks produced out of a carbon steel instead of alloyed steel, increased resistibility of triblets and as a result of it a decreased share of cost of the technological tools in the cost of production of pipes.

EFFECT: the invention ensures production of triblets of pilgrim-step rolling mills for rolling of hot-rolled pipes of large and average diameters, usage of carbon steel in production of triblet ingot blanks, increased resistibility of triblets, decreased share of triblets cost in the cost of the pipes production.

2 cl, 1 tbl

FIELD: manufacture of plungers of long-stroke telescopic hydraulic cylinders in automobile making industry, agricultural machine engineering and road building.

SUBSTANCE: method comprises steps of working inner and outer surfaces of parts, trimming ends and chamfering; working blank of part in rolling mill by plastic deforming simultaneously on inner and outer surfaces by cold rolling for producing mirror surface; then trimming ends of part.

EFFECT: simplified process of making plungers, reduced metal losses, enhanced quality of surface and improved strength characteristics of plungers.

1 ex

FIELD: rolled tube production, namely processes for making mandrels of pilger mills for rolling of hot rolled tubes with mean and large diameters.

SUBSTANCE: method of making mandrels of pilger mills for rolling of hot rolled tubes with mean and large diameters in range 273-550 mm comprises steps of casting steel ingots; forging cylindrical solid or hollow blanks; subjecting blanks to rough working, to heat treatment and working them for final size; hardening blank surface by means of roller; maintaining mandrels until formation of lattice of thermal erosion cracking. Before heat treatment constant- thickness heat- and wear-resistant layer is welded on outer surface of carbonaceous mandrel blank along 2/3 of its working length of mandrel from its joint part while taking into account allowance for mechanical working. Thickness of said layer is decreased towards end of mandrel by 3-4 times. During process of operation mandrel is reground. Then heat- and wear-resistant constant-thickness layer is welded on outer surface of mandrel along 2/3 of its working length from joint part. Thickness of said layer is decreased towards end of mandrel by 3-4 times. Regrinding and layer surfacing steps are performed multiply. Invention allows to use carbon steel instead of alloyed steel at making mandrels, provides increased by 3.5 - 4 times strength of mandrels.

EFFECT: lowered cost of mandrels and therefore reduced cost of conversion of hot rolled tubes in tube rolling aggregates with pilger mills.

1 tbl

The invention relates to metal forming, manufacturing conal fingers tie rods and ball joints front suspension cars

The invention relates to the processing of metals by pressure and can be used for making the step axles and shafts transverse rolling

The invention relates to a press-forging production and can be used for three-dimensional stamping parts variable diameter

FIELD: rolled tube production, namely processes for making mandrels of pilger mills for rolling of hot rolled tubes with mean and large diameters.

SUBSTANCE: method of making mandrels of pilger mills for rolling of hot rolled tubes with mean and large diameters in range 273-550 mm comprises steps of casting steel ingots; forging cylindrical solid or hollow blanks; subjecting blanks to rough working, to heat treatment and working them for final size; hardening blank surface by means of roller; maintaining mandrels until formation of lattice of thermal erosion cracking. Before heat treatment constant- thickness heat- and wear-resistant layer is welded on outer surface of carbonaceous mandrel blank along 2/3 of its working length of mandrel from its joint part while taking into account allowance for mechanical working. Thickness of said layer is decreased towards end of mandrel by 3-4 times. During process of operation mandrel is reground. Then heat- and wear-resistant constant-thickness layer is welded on outer surface of mandrel along 2/3 of its working length from joint part. Thickness of said layer is decreased towards end of mandrel by 3-4 times. Regrinding and layer surfacing steps are performed multiply. Invention allows to use carbon steel instead of alloyed steel at making mandrels, provides increased by 3.5 - 4 times strength of mandrels.

EFFECT: lowered cost of mandrels and therefore reduced cost of conversion of hot rolled tubes in tube rolling aggregates with pilger mills.

1 tbl

FIELD: manufacture of plungers of long-stroke telescopic hydraulic cylinders in automobile making industry, agricultural machine engineering and road building.

SUBSTANCE: method comprises steps of working inner and outer surfaces of parts, trimming ends and chamfering; working blank of part in rolling mill by plastic deforming simultaneously on inner and outer surfaces by cold rolling for producing mirror surface; then trimming ends of part.

EFFECT: simplified process of making plungers, reduced metal losses, enhanced quality of surface and improved strength characteristics of plungers.

1 ex

FIELD: metallurgy; pipe rolling.

SUBSTANCE: the invention is pertaining to the field of pipe rolling, in particular, to the methods of production of triblets of pilgrim-step rolling mills and may be used at production of triblets of pilgrim-step rolling mills for rolling of hot-rolled pipes of large and average diameters (273-550 mm). The method provides for casting of steel ingots, production of triblets out of the steel ingot blanks by, a heat treatment of the triblet ingot blanks, their mechanical working to obtain the finishing dimension with subsequent hardening by a roller run, casting of carbon steel ingots, application by surfacing on the ingot blanks of a heat-resistant and abrasive resistant layer and production of triblets out of the steel ingots by the pilgrim-step rolling, and in the process of operation after appearance of a net flame erosion cracks conduct a triblet multiple remachining till removal of the heat-resistant and abrasive resistant layer, application of a new heat-resistant and abrasive resistant layer by surfacing, machining till the finishing dimension and hardening by a roller running and determination of the thickness of the heat-resistant and abrasive resistant layer from the following equation Δ = A*µ* (l÷D/S*K), where: A - is the minimal thickness of the surfacing layer after the final mechanical working of a triblet and equaled to 10 mm; D - the maximal diameter of the pipes rolled on the given triblet, mm; S - the minimal wall thickness of the pipes rolled on the given triblet, mm; µ - a reduction ratio at rolling of ingots into the hollow triblet blanks and K - a coefficient equal to 0.02. The invention ensures production of triblets of pilgrim-step rolling mills for rolling of hot-rolled pipes of large and average diameters, usage as the basis of the triblet ingot blanks produced out of a carbon steel instead of alloyed steel, increased resistibility of triblets and as a result of it a decreased share of cost of the technological tools in the cost of production of pipes.

EFFECT: the invention ensures production of triblets of pilgrim-step rolling mills for rolling of hot-rolled pipes of large and average diameters, usage of carbon steel in production of triblet ingot blanks, increased resistibility of triblets, decreased share of triblets cost in the cost of the pipes production.

2 cl, 1 tbl

FIELD: rotary plastic working of materials, possibly forming beads on tubular blanks.

SUBSTANCE: method comprises steps of imparting rotation to blank; providing tool rotation simultaneously with rotation of blank due to contact friction between tool and blank; performing local deformation of blank by means of deforming tool in the form of roller; placing roller with possibility of rotation and turning relative to blank axis; performing deformation by two stages; at first stage performing rotary upsetting of blank by means of roller by angle 15 - 40° relative to blank axis for forming truncated cone; at second stage deforming truncated cone by positive motion of roller by angle 40 - 75° relative to blank axis.

EFFECT: enhanced mechanical properties of article, lowered cost of working blank for deforming, enlarged manufacturing possibilities of method.

4 dwg, 1 ex, 1 tbl

FIELD: plastic working of metals, possibly low-waste processes for shaping elongated forged pieces, mainly nut wrenches.

SUBSTANCE: method comprises steps of heating initial blank and subjecting it to preliminary profiling during transverse taper rolling by means of flat tool at temperature of semi-hot deforming; performing additional heating of rolled blank till temperature of hot deforming in combination with preliminary profiling; then forming forged piece in closed die set in hot deforming mode. Additional heating of rolled blank may be realized due to changing deformation modes of transverse taper rolling causing heating of blank.

EFFECT: lowered power consumption for heating blank, improved quality of forged pieces.

4 cl, 3 dwg, 1 ex

FIELD: plastic working of metals, possibly manufacture of articles with elongated axis.

SUBSTANCE: method comprises steps of heating initial blank and feeding it to rolling stand; controlling temperature in position of starting deformation; shaping article in predetermined temperature range; then removing article from rolling stand and realizing additional temperature control of blank while deforming blank after removing it from rolling stand; measuring value real temperature range of rolling process; comparing said temperature range with predetermined value; then increasing and(or) decreasing heating temperature of initial blank in limit of predetermined temperature range depending upon change value of temperature range of rolling process. Deformation rate at cross-taper rolling is changed in range 28-150 m/min according to temperature change of rolled blank.

EFFECT: improved quality of rolled products, prevention of possibility of opening cavity in axial zone.

2 cl, 2 dwg

FIELD: metallurgy.

SUBSTANCE: it is implemented shaping of barstock by means of redistribution of metal lengthways the axis of blank by means of movable across axis at least two wedge-like tools. At least to tone wedge-like tool it is applied additional reciprocative transportation on-the-mitre from 0° up to 90° to direction of its main motion with amplitude of oscillation from 0.002d up to 0.02d and frequency more than 10v/(πd), where: d - diametre of barstock, mm, v - rolling rate, mm/s.

EFFECT: fatigue strength of shafts is increased, surface smoothness of shafts is also increased, effort of operation drive of mill is reduced and power consumption is reduced.

3 dwg

FIELD: metallurgy.

SUBSTANCE: invention is provided for optimisation of rolling process, reduction of power inputs, productivity gain, increasing of accuracy and quality of products. Method includes application of deformation effort to blank from tool with providing of incremental surfacing of specified shape and length. Creation of conditions, at which rolling efforts are closed to the structure of rolling mill, it is provided ensured by that blank is directed by motionless locating block by means of rolling roller in circular wedge, formed by clearance between locating block and rolling roller, and dimensional accuracy of product is directed, regulating clearance between roller and locating block.

EFFECT: optimisation of rolling process, reduction of power inputs, productivity gain, increasing of accuracy and quality of products.

2 cl, 2 dwg

FIELD: process engineering.

SUBSTANCE: invention relates to construction reinforced concrete structures. To increase adhesion between reinforcements and concrete, load bearing capacity in compression, and fire resistance, rolled section reinforcements are rolled from tubular billets of alloyed steel "25Г2С", "30ХГ2С", "35ГС" intended for reinforced concrete structures, and reef-like ledges are rolled on their surface. Note here that said ledges are rolled in hot state by transverses rolling along left of right mono- or multifilar helix.

EFFECT: higher adhesion.

1 tbl, 2 dwg

FIELD: process engineering.

SUBSTANCE: invention relates to tube billet flange rolling-off. Blank is subjected to rotary swaging by roller arranged at the angle 25°<β1<30° to blank axis to form truncated cone at its deformable part. Truncated cone section abutting on its base is deformed by forced displacement of the roll located at 8°<β2<12° to blank axis to form preliminary flange. Preliminary flange is deformed to strain-free section of truncated cone by forced displacement of the roller located at 50°<α<70° to blank axis.

EFFECT: expanded performances.

3 dwg, 1 tbl, 1 ex

Up!