Method of underground hydraulic development of solid mineral deposits

FIELD: mining.

SUBSTANCE: invention refers to underground development of mineral deposits, particularly to hydraulic excavation. The method consists in exposure of deposit by means of boreholes, in hydraulic fragmentation of rock with pressure water jet, in disintegrating and in converting fragmented mass into slurry in a working face, in transporting slurry from the working face to a pulp receiving borehole, and in lifting slurry to surface; also, prior to lifting slurry to surface it is intensively mixed; its heavy barren part (barren rock) is settled on the bottom of the washed-out cavity, thus backfilling mined space; further, light-weighted part of slurry consisting of mineral pulp is sucked off to an upper section of the cavity, wherefrom slurry (concentrated water-coal fuel) is lifted to surface and is transported directly to a consumer via pipes.

EFFECT: realisation of method in this way eliminates necessity to concentrate slurry on surface, to pile rejects and, consequently, decreases land subsidence owing to left in thickness barren rock, which serves as backfilling material of mined space in this case.

 

The invention relates to underground mining, and in particular to hydraulic underground development of deposits of solid minerals.

Known and the closest to the technical essence and the achieved result is a method of underground hydraulic mining of deposits of solid minerals, in which the minerals are transferred in-situ in the slurry.

The main technological processes in modern hydropobic are opening Deposit through wells. Hydraulic fracture (erosion) pressure water jet disintegration and translation at the bottom of the destroyed mass in the slurry, the transportation of the slurry from the bottom up polyporales well, lifting the slurry to the surface, processing, storing tailings, bleaching of recycled water and water, the management of mountain pressure [1].

The disadvantages of this method is that the enrichment is produced on the surface of the earth. Created tailings, removed large areas of land for their location, created negative environmental impact, is the earth surface subsidence over mined-out space, as well as economic and environmental losses associated with multiple rupture process chain by unloading and loading of fuel at its enrichment and transportation to the consumer.

The aim of the invention is the elimination of environmental impacts by preparing a slurry in situ fossil.

This goal is achieved by the fact that before the rise of the mixture from the bottom to the surface produce mixing and deposition of heavy pieces of waste rock at the bottom of the excavation cavity, and then the light part of the slurry, consisting of a slurry of minerals, raise to the surface and sent to the consumer or for processing pipes.

The method consists in the following. Mass deposits of minerals, such as coal, shale and the like, its disclosure is made with the help of wells hydro, i.e. produce hydraulic fracture pressure water jet, achieving disintegration and translation in the mine destroyed the rock mass in the slurry.

The resulting slurry is intensively stirred, and then defend, with its heavy precipitation occurs under its own weight of waste rock at the bottom of the cleaned cavity. After the deposition of the heavy part of the mineral pulp is transported to polyporales well with further transportation through pipes to the surface and to the consumer.

Thus, the preparation of the slurry in underground conditions eliminates the need for enrichment of the slurry on the surface the displacement, storage of tailings, reduces subsidence of the earth surface by leaving in worked out areas of waste rock deposited in the sediment and plays a role laying-out space.

This method allows for a continuous process is mined, enrich and deliver it to the consumer in an automatic mode without generating tailings to the surface.

Sources of information

1. Mountain encyclopedia. Volume 4, str, Moscow, publishing house "Soviet encyclopedia", 1989 (prototype).

The way underground hydraulic mining of deposits of solid minerals, which consists in the development wells, the hydraulic fracture rocks and creating a slurry, transport slurry from the bottom up polyporales well, applying the slurry to the surface, the storage of tailings, the clarification of the circulating water and the management of mountain pressure bookmark, characterized in that before the rise of the slurry from the bottom to the surface produce intense stirring, and then precipitated heavy part of the waste rock at the bottom of the discharge cavity, and the light part of the slurry, consisting of a slurry of minerals, suck polyporales well and transported to the consumer.



 

Same patents:

FIELD: mining.

SUBSTANCE: invention refers to mining and is designed for development of thick deep seated deposits of loose self-breaking or preliminary broken minerals. The facility consists of internal movable pumping column 1 with hydro-monitor head 2 at the end, and of external pulp take-away pipe 3 with telescopic lower portion 4 with receiving opening 5. Telescopic lower part 4 of pulp take-away pipe 3 is movably connected with pumping column 1 and is designed to perform axial displacements. Pumping column 1 can have telescopic lower part 6 equipped with limiting-guiding rings 7 and 8. To limit a run column 1 and telescopic part 4 can be equipped with stop 9 secured to column 1 and with stops 10 and 11 on part 4. The telescopic part 4 of pulp take-away pipe can have density equal or slightly exceeding density of pulp due to property of material for pipe fabrication or due to closed interstice in structure (not shown). This facilitates its floatability in pulp. The facility can be made with variation of average density of lower part 4 of pulp-take away pipe.

EFFECT: simple and reliable facility ensuring efficient development of thick deep-seated deposits of loose self-breaking or preliminary broken minerals due to stable position of receiving opening of pulp take-away pipe in zone of optimal density of pulp.

4 cl, 1 dwg

FIELD: mining.

SUBSTANCE: invention refers to mining and can be implemented at open development of mineral deposits by method of borehole hydraulic excavation. The installation consists of a high pressure column with channels for power water supply and for pulp lifting, of monitor nozzle, of a hydraulic lift, of a receiving chamber with openings and of a hollow head with a nozzle of the hydraulic lift. The installation is equipped with movable and fixed knives, with a spring loaded piston installed in the cavity of the head and designed to travel, and with guides located on sides of the openings; also the movable knives are installed in the guides, while the fixed knives are arranged in the openings. The movable knives are connected to the piston by means of rods. The invention facilitates reducing idle time and carrying out excavating process practically continuously to chamber completion.

EFFECT: reducing idle time and carrying out excavating process practically continuously to chamber completion.

4 cl, 3 dwg

FIELD: mining.

SUBSTANCE: invention refers to procedures of mineral development of placers and sedimentary deposits with stable roof. The procedure consists in exposing the site of a producing reservoir with a main borehole embedding it into rock subjacent the said reservoir, in equipping the main borehole with a casing pipe, in assembling the bearing plate of the latter within boundaries of embedded part of the borehole, in forming in subjacent rock a receiving chamber with inclined outlet openings led to a floor of a producer, in leaving above them a preventive rock massif, in installation of a main hydro-monitor and a pulp-lifting device in the receiving chamber, in fluid wash of main reserve of mineral, in successive fluid wash of mineral placed above massif, and in lifting pulp via the main borehole from the receiving chamber to surface. Development is carried out chamber by chamber, for the purpose of which there are bored auxiliary boreholes around the main one with diametre less, than that of the main, wherein auxiliary hydro-monitors are installed; flush of reserves of a corresponding chamber is performed from each borehole; before flush of chamber reserves above massif there is carried out lifting of the main hydro-monitor and cased column; further the bearing plate of the latter is assembled and the main hydro-monitor is installed above massif within boundaries of thickness of the producer.

EFFECT: increased yield rate from one borehole, more rational development of deposits due to decreased loss of mineral and reduced extraction of barren rock to surface.

3 dwg

FIELD: mining.

SUBSTANCE: invention refers to mining and can be implemented at borehole hydraulic excavating of minerals. The installation consists of a high pressure column, and of a central pulp lifting column installed inside the high pressure column, interior cavity of which is connected to internal cavity of the high pressure column via a nozzle of hydraulic lift; in a lower part of the high pressure column there is installed the nozzle of the hydraulic lift; an additional nozzle with a suction chamber is rigidly connected to the nozzle of the hydraulic lift. The nozzle of the hydraulic lift is connected to the high pressure column, is designed to rotate relative to its lengthwise axis and is equipped with a tailed jet; also tails of the jet are bent opposite to rotation direction; while the suction chamber is equipped with a pulp intake with openings assembled radial to the suction chamber and directed to the side of hydraulic monitor rotation. The invention facilitates increased efficiency due to intensification of pulp formation process and due to increased per cent contents of extracted material in pulp.

EFFECT: increased efficiency due to intensification of pulp formation process and due to increased per cent contents of extracted material in pulp.

3 dwg

FIELD: mining.

SUBSTANCE: invention refers to open development of mineral placers, particularly to mining and concentration of gold containing placers in winter. The procedure consists in exposing works, in sand excavating and in sand transporting to a basin, in flushing and in dump piling. Also, in winter primary excavation and sand transporting are performed with preliminary piling sand on ice of the basin, while the secondary excavation and flushing are carried out in a warm season.

EFFECT: increased degree of disintegration of hard flushed clayish sand and reduced losses of valuable component.

2 cl, 2 dwg

FIELD: oil and gas industry.

SUBSTANCE: invention refers to development of mineral deposits, particularly clay placers, and can be implemented in mining industry. The method consists in striking developed placers, in their layer-specific excavation with parallel trenches leaving between-trenches massifs, in concentrating and in piling. Also between the first trench and the circuit of developed deposit an additional ditch is made, wherein water is supplied; when a successive trench is entered, each preceding trench is successively filled with water. When the last trench is driven, deposit is flooded; between trenches massifs are debugged by means of a drag or dredger; notably, debugging is performed from the first trench to the last one.

EFFECT: increased efficiency of clay placers development by means of increased degree of disintegration and extraction of valuable component at reduced technological losses.

2 cl, 2 dwg

FIELD: mining.

SUBSTANCE: invention refers to development of deposits, particularly, gravel deposits, and can be implemented in mining industry. The method consists in stripping sand, in excavating and transporting sand to a hopper of a washing installation, in concentrating and in piling. Prior to transporting sand into the hopper of the washing installation, sand is piled in a trench laid in the center of the gravel deposit along the length of a production block at the depth below the level of the soil of the sand bed; the trench is filled with water. Also sands are piled in the trench below the water level, and their successive excavation is performed by the underwater method.

EFFECT: increased degree of disintegration of hard washed clayish sand and reduced process losses of valuable component with reduced cost for sand transporting.

2 dwg

FIELD: mining.

SUBSTANCE: method of development of buried water-flooded placers includes preliminary concentration of useful component of sands in lower portion of placer by means of excitation of elastic oscillations in placer sands and successive stoped excavation. A tubular shell is inserted into the placer; the height of the shell exceeds the distance from the surface to the float of the spacer. Excitation of elastic oscillations in spacer sands is performed by means of their transmitting from the surface via the tubular shell. After compressive force has been formed from interior surface of the shell onto contacting surface of covering volume of barren material and after completion of vibratory processing the hydraulic stoped excavation of lower part of the placer is carried out; washing water is supplied via sprayers assembled at walls of the tubular shell and pulp is withdrawn via soil intake openings located at walls of the tubular shell between the sprayers. Also after completion of stoped excavation of lower part of the placer the stoped space is backfilled by supplied backfilling pulp and water withdrawal. Further backfilling pulp is formed from mixture of water with barren rock, for instance, with tailings of sand concentration. After backfilling of excavated space pressure onto surface of covering volume of waste material contacting with interior surface of the shell is dropped to zero and the shell is extracted.

EFFECT: increased selectivity of excavation.

3 dwg

FIELD: mining.

SUBSTANCE: present invention pertains to excavation of mineral deposits, and particularly to gravel deposits, and can be used in the mining industry. The method involves pre-formation of a basin, formation of a dry zone on the productive stratum and basin in the stripped area, fitting interconnected, mining, transport and dump systems into the basin. Formation of the basin in the stripped area is done after piling up sand in it, with further extraction of the latter using a subsurface technique. The minimum distance from the basin to the heap of sand, as well as the depth of the basin, is determined from the maximum degree of weakening of the latter and technological parameters of the mining equipment.

EFFECT: increased efficiency of excavating high-clayey alluvial deposits.

1 dwg

FIELD: mining.

SUBSTANCE: present invention pertains to mining and can be used in excavating deep-seated deposits of minerals, formed by layers with different strength. The method of excavating deep-seated deposits of minerals involves excavating a mining horizon, hydraulic mining of wells on the mining horizon, when mining waterlogged minerals, lying under the mining horizon. From the heading to the deposit of the mineral, dewatering wells are drilled and the head of ground water, in the productive stratum of the deposit, is lowered to a level lower than the sill of the mining horizon. To lower the head of ground water over the deposit to a level safe for mining, in the water bearing bed from the mining horizon, rising, inclined-rising, horizontal guide holes are made, and from the surface to the heading, wells with cased hole filters are made. All these wells are hydraulically linked to each other and to a pump system, from which water is supplied to a domestic water head works, undergoing preliminary purification. The invention can also be used for washing out mineral deposits when hydromining and for water collection in underground water catch basins.

EFFECT: safer mining when flooding minerals and layers above them, as well as increased efficiency of mining and improvement of environmental conservation.

2 cl, 1 dwg

FIELD: mining industry.

SUBSTANCE: method includes opening productive bed by product slanting well, casing the well by pipes column, mounting well block with concentrically positioned pipes columns, lift and hydro-monitoring headpiece, hydro-monitoring erosion of bed and raising formed mixture of rocks by said lift to surface. According to method, opening of productive bed is performed using product slanting well and its casing is performed by displacing outer pipes column of well block along well axis and concurrent rotation of inner pipes column, hydro-monitoring headpiece is inserted inside outer column of pipes of well block, and during erosion of bed it is pulled out of outer pipes column of well block. Device for realization of said method is made in form of well block, including as common parts concentrically placed pipes column, outermost of which is casing column of well, and inner one is provided with headpiece with lift, hydro-monitoring headpiece and pressurizing element, and portal in form of two-passage swivel for feeding water and draining pulp. Pressurizing element is mounted at end piece above hydro-monitoring headpiece and is made in form of cylindrical shelf. To limit movement of inner pipes column relatively to outer pipes column, at lower end of outer pipes column a bushing is mounted with possible interaction with cylindrical shelf, outer diameter of which exceeds inner diameter of bushing.

EFFECT: higher efficiency, lower costs, lower laboriousness.

2 cl, 4 dwg

FIELD: mineral extraction method with the use of underground hydraulic ore cutting and extraction of crushed ore through boreholes.

SUBSTANCE: method involves cutting deposit over the deposit area into panels (sections or blocks); drilling boreholes for extracting pulp; arranging standpipe for pressure working medium supply and standpipe for conveyance medium supply; forming working excavation and filling thereof with stowing after development; performing lower deposit undercutting to provide ore massif permeability for working medium by serial shock blasting borehole and then camouflet explosive charges; forming camouflet cavities by blasting borehole charges and intermediate camouflets; performing successive impregnating of crushed massif with medium dissolving borehole minerals (for instance with acid or alkali solution); arranging containers with the dissolving medium above camouflet explosive charges before blasting thereof; separating them from explosive charges and from upper borehole part by stowing; supplying working medium through pressure working medium pipeline without creating overpressure in the medium; increasing pressure at outlet with hydraulic intensifier; regulating ratio between solid and liquid components of pulp risen by means of airlift plant by supplying compressed air through actuator arranged under pulp intake means.

EFFECT: increased fullness of mineral extraction.

3 cl, 6 dwg

FIELD: transport building, particularly to perform mining operations in far north areas.

SUBSTANCE: method involves cutting ground in pit and supplying sludge to concentration plant; separating the sludge into concentrated and lean sludge fractions in the concentrated plant; forming deposit vessel in water pool, filling the vessel with lean fraction, wherein the vessel is isolated from concentrated ground deposit by partition dam; developing concentrated ground with jet drag heads; forming and supplying strong pulp to washing in zone; washing in ground in layers, wherein upper layer consists of concentrated draining ground, or forming above ground structure by freezing the ground in layers in winter period. To implement above method water pool bottom is deepened to design level, one or several head parts of drag head are installed on deepened water pool bottom, the head parts are covered with concentrated ground and ground deposit is formed below ice boundary of water pool. Ground is extracted from above deposit from under ice through flexible sludge pipelines during extended working season.

EFFECT: reduced unit costs for strong sludge forming and elimination of costs necessary to maintain lane above underwater ground deposit during extended working season.

2 cl, 2 dwg

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with executive members of rotary device made in hydraulic monitor plant through hydraulic system. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted by means of wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Wash zone oscillators and sensors which record dynamic wash zone properties are installed on upper telescopic bar of T-shaped lever pivotally secured to additional rod of hydraulic monitor plant and brought into cooperation with drive through L-shaped link for lever rotation. Pre-disintegration zone oscillator and sensors which record dynamic properties of pre-disintegration zone are installed on telescopic rotary device hinged with airlift rod. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: mining industry, particularly borehole mining.

SUBSTANCE: installation comprises platform, hydraulic monitor plant with telescopic head, as well as airlift, rotary device installed on the platform, water recycling system, elastic oscillation generation system and distribution device connected to falling airlift members and to ultrasound disintegrator. Hydraulic monitor plant is provided with automatic hydraulic monitor operation control system installed on additional platform and connected with rotary device of hydraulic monitor plant through hydraulic system, wherein vertical rod of hydraulic monitor plant is provided with rigid fixers brought into cooperation with slots of additional vertical rod. Elastic oscillation generation system may produce ultrasound oscillations of changeable power, which are transmitted through transformers to wash zone oscillators, pre-disintegration zone oscillator and oscillators of ultrasound disintegrator of the fist and the second level. Sensors which record dynamic wash zone properties and sensors which record dynamic properties of pre-disintegration zone are installed on the additional rod included in hydraulic monitor. Sensors which record dynamic wash zone properties and ones which record dynamic properties of pre-disintegration zone are linked with control system, which controls ultrasound denerator operational characteristics, and with automatic hydraulic monitor operation control system by digital programmed prior transforming device. Sensors, which determine dynamic properties of ultrasound disintegrator, are installed at the first level surface inlet and outlet of the ultrasound disintegrator. Above sensors are connected with control system, which controls operational characteristics of ultrasound denerator, through digital programmed device related with the next disintegration operation.

EFFECT: increased efficiency of mining operation and increased environmental safety.

5 dwg

FIELD: mining industry, particularly to produce loose, soft or single-grained minerals through production boreholes.

SUBSTANCE: method involves installing drilling rig in one point of area to be treated; drilling inclined production boreholes at an angle to horizon; installing pipes in the borehole; assembling hydraulic production equipment and lifting mineral to surface. Drilling rig is installed in one point to be treated so that the drilling rig may perform azimuth and angular rotation in vertical plane. Several production boreholes extending at different angles to horizon in common vertical plane are drilled by the drilling rig. The first borehole has minimal angle defined by maximal possible length of borehole, which can be drilled by the drilling rig. The next borehole has maximal angle defined by rock deformation area to prevent rock deformation on surface and in mineral production equipment installation area. Remainder boreholes are drilled in the same vertical plane at α3, α4, ... απ angles to horizon, which maximizes efficiency of mineral production. Similar inclined boreholes are drilled in other vertical planes by rotating the drilling rig in azimuth direction through γ1, γ2 ... γπ angles. Mineral is produced simultaneously or sequentially from borehole groups to provide smooth lowering of overlaying rock.

EFFECT: increased mineral removing fullness with the use of single equipment unit, reduced amount of construction-and-assembling operations, possibility to perform operations in any season, reduced costs of operation performing in cold season, increased safety for staff and equipment.

2 dwg, 2 ex

FIELD: mineral field development by hydraulic mining methods, as well as borehole drilling and all-purpose underground cavities creation.

SUBSTANCE: device comprises connection pipe for pressure water. Connection pipe of slurry pipeline has conical constricted section, wear-resistant insert made as spaced rings of wear-resistant material installed downstream from the conical constricted section in slurry flow direction, and conical widening section arranged downstream from the rings. Connection pipe of slurry pipeline has orifices made in area of ring location and adapted to supply pressure water into connection pipe of slurry pipeline via gaps defined between the rings. Hydraulic elevator is arranged at end of connection pipe for pressure water. Connection pipe for pressure water and hydraulic elevator may have water-jet nozzles. Gaps between rings of wear-resistant insert are created due to ring end roughness. As pressure water is supplied part of flow moving via annular gap passes through annular hydraulic elevator and enters into connection pipe of slurry pipeline to create ascending flow. Due to created vacuum washed mineral is sucked into connection pipe of slurry pipeline in slurry form and then transported to surface.

EFFECT: reduced wear of inlet connection pipe part.

3 cl, 1 dwg

Hydraulic monitor // 2272143

FIELD: methods of hydraulic mining, particularly hydraulic monitors for rock breakage with water jets.

SUBSTANCE: hydraulic monitor comprises base, hinge assembly and barrel with nozzle. Through pipe extending along barrel axis is installed in barrel channel and supported by centrators. The first pipe end is communicated with atmosphere, another one is located in the nozzle. Pipe-nozzle diameter ratio is 0.50-0.57. The pipe serves as ejection means. As high pressure water passes through the nozzle streamlined air bubble is created at pipe outlet due to air ejection. Air bubble pressure is less than atmospheric pressure. This provides jet compression at nozzle outlet and as a result increases jet range. Abrasive and chemical materials may be used with water jet to improve rock breakage efficiency.

EFFECT: increased efficiency.

1 dwg

FIELD: mining, particularly to develop gold-bearing rock with high clay content.

SUBSTANCE: method involves loosening rock by applying mechanical action to the rock along with periodically initiating elastic vibrations in ultrasonic-frequency band with constant frequency in clay-sand rock - water system, wherein the elastic vibrations are initiated under constant outer pressure and power for different time periods; determining optimal action application time to provide stable clay particle precipitation in clay-sand rock - water system having constant volume during previously choosing controllable particle dimension range; determining conditional transformation coefficients from mathematical expression; making plot of conditional transformation coefficient change as a function of time; determining increase of controllable initial specific surface of particles to be loosened and halving ultrasound power when controllable initial specific surface of particles to be loosened is increased by an order.

EFFECT: reduced specific power consumption.

6 dwg

FIELD: geotechnology, particularly bore mining in wide range of mining and geological conditions.

SUBSTANCE: method involves drilling bore extending for the full thickness of underground mineral formation; cutting the underground mineral formation in chamber coaxial to the bore with the use of water-jet devices. Before hydraulic formation cutting rock massif is moistened by supplying pressurized water in bore for a time period enough to expand moistened zone for necessary distance, wherein water pressure is less than pressure of hydraulic formation cutting. After formation moistening water-jet device is lowered in the bore to cut mineral in moistened zone adjoining the bore. After that formation moistening and cutting operations are repeated to create chamber having predetermined dimensions.

EFFECT: reduced power inputs for hydraulic rock cutting.

2 dwg

Up!